精英家教网 > 高中数学 > 题目详情
8.在椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$内有一点P(1,-1),F为椭圆右焦点,在椭圆上有一点M,使|MP|+|MF|的值最大,则这一最大值是4+$\sqrt{5}$.

分析 由椭圆方程求得a,利用椭圆定义把|MP|+|MF|转化,数形结合得答案.

解答 解:如图,

由椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$,得a2=4,a=2.
设椭圆左焦点为F′,则|MF|=2a-|MF′|=4-|MF′|,
∴|MP|+|MF|=4-|MF′|+|MP|=4+(|MP|-|MF′|).
由图可知,当M为PF′的延长线与椭圆的交点时,|MP|-|MF′|有最大值为$\sqrt{5}$.
∴|MP|+|MF|的值最大值为4+$\sqrt{5}$.
故答案为:4+$\sqrt{5}$.

点评 本题考查椭圆的简单性质,考查数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若-1<a<b<1,则下列不等式中成立的是(  )
A.-2<a-b<0B.-2<a-b<-1C.-1<a-b<0D.-1<a-b<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,若边c=$\sqrt{3}$,b=1,∠C=60°
(1)求角B的大小;
(2)求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}{sinx(x>0)}\\{(\frac{4}{3π})^{x}(x≤0)}\end{array}\right.$,则f(f(-1))的值为(  )
A.$\frac{3π}{4}$B.$\frac{\sqrt{2}}{2}$C.-sin1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.a=-6是直线l1:ax+(1-a)y-3=0和直线l2:(a-1)x+2(a+3)y-2=0垂直的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.不充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知二次函数f(x)=ax2+bx+c.
(1)若a=c>0,f(1)=1,对任意x∈|[-2,2],f(x)的最大值与最小值之和为g(a),求g(a)的表达式;
(2)若a,b,c为正整数,函数f(x)在(-$\frac{1}{4}$,$\frac{1}{4}$)上有两个不同零点,求a+b+c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.数列{an}的通项公式为an=-n2+9n,则该数列第4或5项最大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.命题“?x∈R,ex>x”的否定是(  )
A.$?{x_0}∈R,{e^{x_0}}>{x_0}$B.?x∈R,ex<x
C.?x∈R,ex≤xD.$?{x_0}∈R,{e^{x_0}}≤{x_0}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知方程$\frac{x^2}{2-k}+\frac{y^2}{k-1}=1$表示的图形是(1)椭圆;(2)双曲线;分别求出k的取值范围.

查看答案和解析>>

同步练习册答案