精英家教网 > 高中数学 > 题目详情

已知.

(I)  求函数的定义域;

(II) 判断函数的奇偶性;

 (III)求的值.

 

【答案】

( I ) 因为             ……………………………….2分

所以得到.     

所以函数的定义域为.     …………………….4分

( II ) 函数的定义域为,

时, ,            ………… …….5分

因为 …………….6分

.                           …………….8分

所以函数是偶函数.     …….9分

( III ) 因为

             …………….11分

   =.

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函f(x)=ex-x (e为自然对数的底数).
(1)求f(x)的最小值;
(2)不等式f(x)>ax的解集为P,若M={x|
12
≤x≤2
}且M∩P≠∅求实数a的取值范围;
(3)已知n∈N+,且Sn=∫n0f(x)dx,是否存在等差数列{an}和首项为f(I)公比大于0的等比数列{bn},使得a1+a2+…+an+b1+b2+…bn=Sn?若存在,请求出数列{an}、{bn}的通项公式.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函致f (x)=x3+bx2+cx+d.
(I)当b=0时,证明:曲线y=f(x)与其在点(0,f(0))处的切线只有一个公共点;
(Ⅱ)若曲线y=f(x)在点(1,f(1))处的切线为12x+y-13=0,记函数y=f(x)的两个极值点为x1,x2,当x1+x2=2时,求f(x1)+f(x2).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函致f (x)=x3+bx2+cx+d.
(I)当b=0时,证明:曲线y=f(x)与其在点(0,f(0))处的切线只有一个公共点;
(Ⅱ)若曲线y=f(x)在点(1,f(1))处的切线为12x+y-13=0,且它们只有一个公共点,求函数y=f(x)的所有极值之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e|lnx|+a|x-1|(a为实数)
(I)若a=1,判断函数f(x)在区间[1,+∞)上的单调性(不必证明);
(II)若对于任意的x∈(0,1),总有f(x)的函数值不小于1成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•温州一模)已知函f(x)=ax2-ex(a∈R).
(Ⅰ)a=1时,试判断f(x)的单调性并给予证明;
(Ⅱ)若f(x)有两个极值点x1,x2(x1<x2).
(i) 求实数a的取值范围;
(ii)证明:-
e2
<f(x1)<-1
. (注:e是自然对数的底数)

查看答案和解析>>

同步练习册答案