精英家教网 > 高中数学 > 题目详情

【题目】如图,直角梯形ABDC中,.

1)若S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线,并说明理由;

2)直角梯形ABDC绕直线AC所在直线旋转一周所得几何体名称是什么?并求出其体积.

【答案】(1)交线和理由见详解;(2)所得几何体为圆台,体积为.

【解析】

1)找到两个平面的两个公共点,根据公理,即可得到交线;

2)根据旋转体的特点,即可知道几何体的名称,根据圆台体积计算公式可算出体积.

1)根据题意,平面SBD和平面SAC的交线为,具体如下图所示:

延长AC,延长BD,取两条直线的交点为M,连接SM

SM即为平面SBD和平面SAC的交线为

理由如下:

因为S点在平面SAC中,S点也在平面SBD中,

S点为两平面的公共点;

又因为M点在直线AC上,直线AC在平面SAC中,

M点在平面SAC中;

同理,因为M点在直线BD上,直线BD在平面SBD中,

M点在平面SBD中;

M点和S点均是平面SAC和平面SBD的公共点

故直线SM为两个平面的交线.

(2)该旋转体为圆台.

其中小圆的圆面积为

大圆的圆面积为

圆台的高即为AC的长度,故

则该圆台的体积为

解得

故该几何体为圆台,且体积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地区某农产品近几年的产量统计如表:

年份

2012

2013

2014

2015

2016

2017

年份代码t

1

2

3

4

5

6

年产量y(万吨)

6.6

6.7

7

7.1

7.2

7.4

Ⅰ)根据表中数据,建立关于的线性回归方程

(Ⅱ)根据线性回归方程预测2019年该地区该农产品的年产量.

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:.(参考数据:,计算结果保留小数点后两位)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面是菱形,.

(1)证明:

(2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,底面为直角梯形,分别为中点,且.

(1)平面

(2)若为线段上一点,且平面,求的值;

(3)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】进入12月以来,某地区为了防止出现重污染天气,坚持保民生、保蓝天,严格落实机动车限行等一系列管控令,该地区交通管理部门为了了解市民对单双号限行的赞同情况,随机采访了220名市民,将他们的意见和是否拥有私家车情况进行了统计,得到如下的2×2列联表:

赞同限行

不赞同限行

合计

没有私家车

90

20

110

有私家车

70

40

110

合计

160

60

220

1)根据上面的列联表判断,能否有99%的把握认为赞同限行与是否拥有私家车有关;

2)为了解限行之后是否对交通拥堵、环境污染起到改善作用,从上述调查的不赞同限行的人员中按分层抽样抽取6人,再从这6人中随机抽出2名进行电话回访,求抽到的2人中至少有1没有私家车人员的概率.

参考公式:K2

PK2≥k

0.10

0.05

0.010

0.005

0.001

k

2.706

3..841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中a∈R.

(Ⅰ)讨论函数的单调性;

(Ⅱ)当 时,设为曲线上任意两点,曲线在点处的切线斜率为k,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)g(x)(a>0,且a≠1).

(1)求函数φ(x)f(x)g(x)的定义域;

(2)试确定不等式f(x)≤g(x)x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图像相交于点两点,若动点满足,则点的轨迹方程是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线及圆

1)求直线所过定点;

2)求直线被圆截得的最短弦长及此时直线的方程.

查看答案和解析>>

同步练习册答案