分析 (1)求出函数的导数,计算f′(1),f(1),求出求出方程,从而求出定点即可;
(2)求出g(x)的导数,根据g(1)是g(x)在区间(0,3]上的极大值,不是最大值,得到关于a的不等式,解出即可.
解答 (1)证明:∵f'(x)=3x2-2ax+a,∴f'(1)=3-a,
∵f(1)=a+1,∴曲线y=f(x)在点(1,f(1))处的切线方程为y-(a+1)=(3-a)(x-1),
即a(x-2)=3x-y-2,令x=2,则y=4,
故曲线y=f(x)在点(1,f(1))处的切线过定点(2,4);
(2)解:g'(x)=f'(x)+a-3=3x2-2ax+2a-3=(x-1)[3x-(2a-3)],
令g'(x)=0得x=1或x=$\frac{2a-3}{3}$,
∵g(1)是g(x)在区间(0,3]上的极大值,
∴$\frac{2a-3}{3}$>1,∴a>3,
令g'(x)>0,得x<1或x>$\frac{2a-3}{3}$,g(x)递增;
令g'(x)<0,得1<x<$\frac{2a-3}{3}$,g(x)递减,
∵g(1)不是g(x)在区间(0,3]上的最大值,
∴g(x)在区间(0,3]上的最大值为g(3)=18-2a,
∴g(3)=18-2a>g(1)=2a-2,∴a<5,又a>3,
∴3<a<5.
点评 本题考查了函数的单调性、极值、最值问题,考查导数的应用,是一道中档题.
科目:高中数学 来源: 题型:选择题
A. | [-4,4] | B. | [-2,2] | C. | [-2,0] | D. | [0,4] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ①② | B. | ①③ | C. | ②③④ | D. | ①②③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com