精英家教网 > 高中数学 > 题目详情

【题目】如图,直三棱柱中,分别是线段的中点,在线段上运动,设.

1)证明:

2)是否存在点,使得平面与平面所成的锐二面角的大小为?若存在,试确定点的位置;若不存在,请说明理由.

【答案】1)证明见解析;(2)存在,上,且

【解析】

1)推导出,由线面垂直的判定定理,得到,由此证得

2)以为坐标原点,分别以的方向分别为轴正方向建立空间直角坐标系,利用向量法求得存在点P,使得平面与平面所成的锐二面角的大小为.

1)在中,,得

同理可得,所以

,又

由线面垂直的判定定理,可得

又由,所以.

2)由()可得,不妨设

为坐标原点,分别以的方向分别为轴正方向建立空间直角坐标系,

设平面的法向量为

所以

,则,得

取平面的一个法向量为

假设存在点满足题意,

化简得,解得

又由,所以

综上,存在点,使得平面与平面的夹角为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为增强学生法治观念,营造学宪法、知宪法、守宪法的良好校园氛围,某学校开展了宪法小卫士活动,并组织全校学生进行法律知识竞赛.现从全校学生中随机抽取50人,统计他们的竞赛成绩,并得到如表所示的频数分布表.

分数段

人数

5

15

15

12

(Ⅰ)求频数分布表中的的值,并估计这50名学生竞赛成绩的中位数(精确到0.1);

(Ⅱ)将成绩在内定义为合格,成绩在内定义为不合格”.请将列联表补充完整.

合格

不合格

合计

高一新生

12

非高一新生

6

合计

试问:是否有95%的把握认为法律知识的掌握合格情况是否是高一新生有关?说明你的理由;

(Ⅲ)在(Ⅱ)的前提下,在该50人中,按合格与否进行分层抽样,随机抽取5人,再从这5人中随机抽取2人,求恰好2人都合格的概率.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).

1)求选出的3名同学是来自互不相同学院的概率;

2)设为选出的3名同学中女同学的人数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l的参数方程是t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是.

1)证明:直线l与曲线C相切;

2)设直线lx轴、y轴分别交于点AB,点P是曲线C上任意一点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某快递公司在某市的货物转运中心,拟引进智能机器人分拣系统,以提高分拣效率和降低物流成本,已知购买台机器人的总成本万元.

1)若使每台机器人的平均成本最低,问应买多少台?

2)现按(1)中的数量购买机器人,需要安排人将邮件放在机器人上,机器人将邮件送达指定落袋格口完成分拣,经实验知,每台机器人的日平均分拣量(单位:件),已知传统人工分拣每人每日的平均分拣量为1200件,问引进机器人后,日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】底面为菱形的直四棱柱,被一平面截取后得到如图所示的几何体..

1)求证:

2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的极大值为,其中为自然对数的底数.

1)求实数的值;

2)若函数,对任意,恒成立.

i)求实数的取值范围;

ii)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新高考,取消文理科,实行,成绩由语文、数学、外语统一高考成绩和自主选考的3门普通高中学业水平考试等级性考试科目成绩构成.为了解各年龄层对新高考的了解情况,随机调查50人(把年龄在称为中青年,年龄在称为中老年),并把调查结果制成下表:

年龄(岁)

频数

5

15

10

10

5

5

了解

4

12

6

5

2

1

1)分别估计中青年和中老年对新高考了解的概率;

2)请根据上表完成下面列联表,是否有95%的把握判断对新高考的了解与年龄(中青年、中老年)有关?

了解新高考

不了解新高考

总计

中青年

中老年

总计

附:.

0.050

0.010

0.001

3.841

6.635

10.828

3)若从年龄在的被调查者中随机选取3人进行调查,记选中的3人中了解新高考的人数为,求的分布列以及.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆截直线所得的线段的长度为.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线与椭圆交于两点,点是椭圆上的点,是坐标原点,若,判定四边形的面积是否为定值?若为定值,求出定值;如果不是,请说明理由.

查看答案和解析>>

同步练习册答案