精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的几何体中,四边形是等腰梯形, 平面

(1)求证: 平面

(2)求直线与平面所成角的余弦值.

【答案】(1)见解析;(2)直线与平面所成角的余弦值为.

【解析】试题分析:(1)要证线面平行,先找线线平行,先证平面AED⊥平面ABCD,做过E作EGAD于G,则EG平面ABCD,∴FC∥EG,进而得到线面平行;(2)建系,求面的法向量和线的方向向量,根据向量夹角得到线面角,即可。

解析:

Ⅰ)证明:∵四边形ABCD是等腰梯形,ABCDDAB=60°

BC=DCADC=BCD=120°∴∠CDB=30°

∴∠ADB=90°,即BDAD

AEBD =ABD⊥平面AED

BD平面ABCD∴平面AED⊥平面ABCD

如图4,过EEGADG,则EG⊥平面ABCD

FC⊥平面ABCDFCEG

EG平面AEDFC平面AED

FC∥平面AED

Ⅱ)解:如图5,连接AC,由(Ⅰ)知ACBC

FC⊥平面ABCD

CACBCF两两垂直.

C为原点,建立空间直角坐标系Cxyz

BC,则ACAB

设平面BDF的法向量为

,则 ,则

设直线AF与平面BDF所成角为,则

故直线AF与平面BDF所成角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:

1)求关于的线性回归方程;

2)利用()中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,四边形为矩形,四边形为梯形, ,平面与平面垂直,且.

(1)求证: 平面

(2)若,且平面与平面所成锐二面角的余弦值为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】无穷数列满足: 为正整数,且对任意正整数 为前 中等于的项的个数.

)若,请写出数列的前7项;

)求证:对于任意正整数必存在,使得

)求证:“”是“存在,当时,恒有 成立”的充要条件。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间

(2)当时,求函数上的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·太原三模)已知等比数列{an}的各项均为不等于1的正数,数列{bn}满足bn=lganb3=18,b6=12,则数列{bn}的前n项和的最大值为(  )

A. 126 B. 130 C. 132 D. 134

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点M(﹣1,0),N(1,0),曲线E上任意一点到点M的距离均是到点N的距离的倍.

(1)求曲线E的方程;

(2)已知m≠0,设直线xmy﹣1=0交曲线EAC两点,直线mx+ym=0交曲线EBD两点,若CD的斜率为﹣1时,求直线CD的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知四棱锥 中,

.

(1)证明:顶点在底面的射影为边的中点;

(2)点上,且,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018河南安阳市高三一模如下图在平面直角坐标系直线与直线之间的阴影部分即为区域中动点的距离之积为1

)求点的轨迹的方程

)动直线穿过区域分别交直线两点若直线与轨迹有且只有一个公共点求证 的面积恒为定值

查看答案和解析>>

同步练习册答案