(本大题满分14分)
设函数上两点,若,且P点的横坐标为.
(1)求P点的纵坐标;
(2)若求;
(3)记为数列的前n项和,若对一切都成立,试求a的取值范围.
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:已知甲、乙两地相距100千米。
(Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设,, 其中是不等于零的常数,
(1)、(理)写出的定义域(2分);
(文)时,直接写出的值域(4分)
(2)、(文、理)求的单调递增区间(理5分,文8分);
(3)、已知函数,定义:,.其中,表示函数在上的最小值,
表示函数在上的最大值.例如:,,则 , ,
(理)当时,设,不等式
恒成立,求的取值范围(11分);
(文)当时,恒成立,求的取值范围(8分);
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知,函数
(1)求的反函数;
(2)若在[0,1]上的最大值与最小值互为相反数,求;
(3)若的图像不经过第二象限,求的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
已知函数f(x)=-x2+ax-lnx(a∈R).
(1)求函数f(x)既有极大值又有极小值的充要条件;
(2)当函数f(x)在[,2]上单调时,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知函数,其图象过点(,).
(1)求的值及最小正周期;
(2)将函数的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数的图象,求函数在[0, ]上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分15分)
若函数f(x)=ax3+bx2+cx+d是奇函数,且f(x)极小值=f(-)=-.
(1)求函数f(x)的解析式;
(2)求函数f(x)在[-1,m](m>-1)上的最大值;
(3)设函数g(x)=,若不等式g(x)·g(2k-x)≥(-k)2在(0,2k)上恒成立,求实数k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com