【题目】已知函数 的最小正周期为 ,且当 时, 取得最大值 .
(1)求 的解析式及单调增区间;
(2)若 ,且 ,求 ;
(3)将函数 的图象向右平移 ( )个单位长度后得到函数 是偶函数,求 的最小值.
【答案】(1)();(2), , 或;(3)
【解析】试题分析:(1)利用函数的周期、最值,求出,然后求出,通过当时, 取得最大值,求出,从而求的解析式,解不等式可得单调增区间;(2)若,且,可得 或, 取特殊值可求出;(3)利用函数的图象向右平移个单位长度后得到函数 的图象,由是偶函数,可得 (),解得,然后再求 的最小值.
试题解析:(1)由已知条件知, , ,所以 ,所以 ,
又 ,所以 ,所以 .
由 () ,得 ()
所以 的单调增区间是 ()
(2)由 ,得 ,
所以 或 ()
所以 或 ()
又 ,所以 , , 或 .
(3)有条件,可得
又 是偶函数,所以 的图象关于 轴对称,所以当 时, 取最大值或最小值.
即 ,所以 (),解得 ()
又 ,所以 的最小值是 .
科目:高中数学 来源: 题型:
【题目】在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,E、F分别为A1C1、B1C1的中点,D为棱CC1上任一点.
(Ⅰ)求证:直线EF∥平面ABD;
(Ⅱ)求证:平面ABD⊥平面BCC1B1 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2+(x﹣1)ex .
(1)当a=﹣ 时,求f(x)在点P(1,f(1))处的切线方程;
(2)讨论f(x)的单调性;
(3)当﹣ <a<﹣ 时,f(x)是否存在极值?若存在,求所有极值的和的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】濮阳市黄河滩区某村2010年至2016年人均纯收入(单位:万元)的数据如下表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代号x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(Ⅰ)求y关于x的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2010年至2016年该村人均纯收入的变化情况,并预测该村2017年人均纯收入.
附:回归直线的斜率和截距的最小乘法估计公式分别为: = , = ﹣ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的三个内角A,B,C所对应的边分别为a,b,c,且满足bcosC+ c=a.
(1)求△ABC的内角B的大小;
(2)若△ABC的面积S= b2 , 试判断△ABC的形状.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com