精英家教网 > 高中数学 > 题目详情
14.某电影公司2012年大陆电影票房为21亿元,若该公司大陆电影票房的年平均增长率为x,2016年大陆电影票房为y亿元,则y与x的函数关系式为(  )
A.y=84xB.y=21(1+4x)C.y=21x4D.y=21(1+x)4

分析 根据题意,2012年大陆电影票房为21亿元,年平均增长率为x,则2013年为21(1+x),依此类推,可得2016年大陆电影票房.

解答 解:由题意:2012年大陆电影票房为21亿元,年平均增长率为x,则2016年大陆电影票房为21(1+x)4
即y=21(1+x)4
∴y与x的函数关系式为y=21(1+x)4
故选:D.

点评 本题考查了实际问题的增长率问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.过抛物线x2=4y焦点F的直线交抛物线于A,B两点,若|AF|=3,则|BF|的值为(  )
A.2B.$\frac{1}{2}$C.1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知定义在R上的函数f(x)=$\frac{b-{4}^{x}}{a+{4}^{x}}$是奇函数.
(1)求a,b的值;
(2)判断其单调性并加以证明;
(3)若对任意的t∈[-1,3],不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图F1、F2是椭圆C1:$\frac{{x}^{2}}{4}$+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在新年联欢晚会上,游戏获胜者甲和乙各有一次抽奖机会,共有4个奖品,其中一等奖2个,二等奖2个,甲、乙二人依次各抽一次.
(Ⅰ)求甲抽到一等奖,乙抽到二等奖的概率;
(Ⅱ)求甲、乙二人中至少有一人抽到一等奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=x-$\frac{1}{x}$.
(1)若f(log3x)=0,求x的值.;
(2)若x∈[1,+∞),f(mx)+mf(x)<0恒成立,求实数m的取值范围;
(3)若关于x的方程log2f(x)=log2(ax+1)的解集中恰有一个元素,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)为偶函数,且f(x)=f(x-4),在区间[0,2]上,f(x)=$\left\{\begin{array}{l}{-{x}^{2}-\frac{3}{2}x+5,0≤x≤1}\\{{2}^{x}+{2}^{-x},a<x≤2}\end{array}\right.$,g(x)=($\frac{1}{2}$)|x|+a,若F(x)=f(x)-g(x)恰好有4个零点,则a的取值范围是(  )
A.(2,$\frac{19}{8}$)B.(2,3)C.(2,$\frac{19}{8}$]D.(2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=x3+x-1,则在下列区间中,f(x)一定有零点的是(  )
A.(-1,0)B.(0,1)C.(-2,-1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在如图所示的几何体中,四边形ABCD为矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=l,点P在棱DF上.
(Ⅰ)若P为DF的中点,求证:BF∥平面ACP;
(Ⅱ)求三棱锥P-BEC的体积.

查看答案和解析>>

同步练习册答案