精英家教网 > 高中数学 > 题目详情
3.设f(x)=ax3+bx+c (a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f?(x)的最小值为-12.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调增区间,并求函数f(x)在[-1,3]上的最大值和最小值.

分析 (1)由奇函数的性质可得c=0,求出f(x)的导数,求得切线的斜率,由两直线垂直的条件:斜率之积为-1,解方程可得a,b,进而得到所求解析式;
(2)求出f(x)的导数,令导数大于0,可得增区间;求出极值和端点处的函数值,即可得到所求的最值.

解答 解:(1)f(x)=ax3+bx+c (a≠0)为奇函数,
可得f(0)=0,即为c=0,
f(x)的导数为f′(x)=3ax2+b,
在点(1,f(1))处的切线斜率为3a+b,
由切线与直线x-6y-7=0垂直,可得3a+b=-6,
导函数f′(x)的最小值为-12,可得a>0,b=-12,
解方程可得a=2,b=-12,
即有f(x)=2x3-12x;
(2)f(x)=2x3-12x的导数为f′(x)=6x2-12,
由6x2-12>0,解得x>$\sqrt{2}$或x<-$\sqrt{2}$,
即为f(x)的单调递增区间为(-∞,-$\sqrt{2}$),($\sqrt{2}$,+∞);
由f′(x)=6x2-12=0,解得x=$\sqrt{2}$(负的舍去),
由f(-1)=-2+12=10,f($\sqrt{2}$)=-8$\sqrt{2}$,f(3)=54-36=18,
可得f(x)在[-1,3]上的最大值为18,最小值为-8$\sqrt{2}$.

点评 本题考查导数的运用:求切线的斜率和单调区间、极值和最值,同时考查两直线垂直的条件:斜率之积为-1,以及二次函数的最值的求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知角α是第二象限的角,且$sinα=\frac{{2\sqrt{5}}}{5}$,则tanα=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.(x+1+$\frac{1}{x}$)6的展开式中的常数项为(  )
A.32B.90C.140D.141

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知F是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的右焦点,过点F向C的一条渐近线引垂线,垂足为A,交另一条渐近线于点B,F在线段AB上,O为坐标原点,若|OB|=2|OA|,则双曲线C的离心率是$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某高校文学院和理学院的学生组队参加大学生电视辩论赛,文学院推荐了2名男生,3名女生,理学院推荐了4名男生,3名女生,文学院和理学院所推荐的学生一起参加集训,由于集训后学生水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队.
(1)求文学院至少有一名学生入选代表队的概率;
(2)某场比赛前,从代表队的6名学生在随机抽取4名参赛,记X表示参赛的男生人数,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.对于任意实数a、b,(a-b)2≥kab均成立,则实数k的取值范围是(  )
A.{-4,0}B.[-4,0]C.(-∞,0]D.(-∞,-4]∪[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.将正整数排成如图所示:其中第i行,第j列的那个数记为aij,则数表中的2015应记为a4579

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.组合数$C_n^r\;(n>r≥1,n,r∈N)$恒等于(  )
A.$\frac{r+1}{n+1}C_{n-1}^{r-1}$B.$\frac{n+1}{r+1}C_{n-1}^{r-1}$C.$\frac{r}{n}C_{n-1}^{r-1}$D.$\frac{n}{r}C_{n-1}^{r-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.抛物线x2=4y上与焦点的距离等于4的点的纵坐标是(  )
A.lB.KC.3D.y-1=k(x-2)

查看答案和解析>>

同步练习册答案