分析 分别求出线段FA与AB的垂直平分线方程,联立解出圆心坐标P,利用m+n>0,与离心率计算公式即可得出.
解答 解:如图所示,
线段FA的垂直平分线为:x=$\frac{1-\sqrt{1-{b}^{2}}}{2}$.
线段AB的中点$(\frac{1}{2},\frac{b}{2})$.
∵kAB=-$\frac{b}{1}$=-b.
∴线段AB的垂直平分线的斜率k=$\frac{1}{b}$.
∴线段AB的垂直平分线方程为:y-$\frac{b}{2}$=$\frac{1}{b}(x-\frac{1}{2})$,
把x=$\frac{1-\sqrt{1-{b}^{2}}}{2}$=m代入上述方程可得:y=$\frac{{b}^{2}-\sqrt{1-{b}^{2}}}{2b}$=n.
∵m+n>0,
∴$\frac{1-\sqrt{1-{b}^{2}}}{2}$+$\frac{{b}^{2}-\sqrt{1-{b}^{2}}}{2b}$>0.
化为:$b>\sqrt{1-{b}^{2}}$,又0<b<1,
解得$\frac{\sqrt{2}}{2}<b<1$.
∴$e=\frac{c}{a}$=c=$\sqrt{1-{b}^{2}}$∈$(0,\frac{\sqrt{2}}{2})$.
故答案为:$(0,\frac{\sqrt{2}}{2})$.
点评 本题考查了椭圆的标准方程及其性质、线段的垂直平分线方程、三角形外心性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
x | 5 | 6 | 7 | 8 |
y | 10 | 8 | 7 | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com