【题目】在等差数列 中,
(1)求数列 的通项公式;
(2)设数列 是首项为1,公比为 的等比数列,求 的前 项和
【答案】
(1)
设等差数列{ }的公差是d,
∵ ,
∴( )-( )=2d=-6,d=-3,
∴ =2 +7d=-23, =-1,
∴数列{ }的通项公式为 =-3n+2.
(2)
∵数列 是首项为1,公比为 的等比数列,
∴ = ,∴ = - =3n-2+ ,
∴ =[1+4+…+(3n-2)]+(1+q+…+ )
当q=1时, = = ;
当q≠1时, = + .
【解析】(1){ }是等差数列,已知 ,根据等差数列的性质求出首项 和公差d,进而求出通项公式 ;(2) 是一个首项为1,公比为q的等差数列。根据等差数列的求和公式求出数列 的前n项和,然后减去数列 的前n项和即可。这里需要注意的是公比q要分两种情况进行讨论。
科目:高中数学 来源: 题型:
【题目】某公司有A,B,C,D,E五辆汽车,其中A、B两辆汽车的车牌尾号均为1,C、D两辆汽车的车牌尾号均为2,E车的车牌尾号为6,已知在非限行日,每辆车可能出车或不出车,A、B、E三辆汽车每天出车的概率均为 ,C、D两辆汽车每天出车的概率均为 ,且五辆汽车是否出车相互独立,该公司所在地区汽车限行规定如下:
车牌尾号 | 0和5 | 1和6 | 2和7 | 3和8 | 4和9 |
限行日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
(1)求该公司在星期一至少有2辆汽车出车的概率;
(2)设X表示该公司在星期二和星期三两天出车的车辆数之和,求X的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(选做题)[选修4-4:坐标系与参数方程]
已知曲线C的参数方程为 (θ为参数).以原点O为极点,x轴的非负半轴为极轴建立极坐标方程.
(1)求曲线C的极坐标方程;
(2)若直线l:θ=α(α∈[0,π),ρ∈R)与曲线C相交于A,B两点,设线段AB的中点为M,求|OM|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆E: + =1(a>b>0)的左右焦点分别为F1 , F2 .
(Ⅰ)若椭圆E的长轴长、短轴长、焦距成等差数列,求椭圆E的离心率;
(Ⅱ)若椭圆E过点A(0,﹣2),直线AF1 , AF2与椭圆的另一个交点分别为点B,C,且△ABC的面积为 ,求椭圆E的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥中P﹣ABCD,底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA=PD= AD,E、F,分别为PC、BD的中点.
(1)求证:EF∥平面PAD;
(2)在线段AB上是否存在点G,使得二面角C﹣PD﹣G的余弦值为 ,若存在,请求出点G的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在△ABC中,角A,B,C所对的边分别为a,b,c,且a<b<c,C=2A.
(1)若c= a,求角A;
(2)是否存在△ABC恰好使a,b,c是三个连续的自然数?若存在,求△ABC的周长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数g(x)=a﹣x2( ≤x≤e,e为自然对数的底数)与h(x)=2lnx的图像上存在关于x轴对称的点,则实数a的取值范围是( )
A.[1, +2]
B.[1,e2﹣2]
C.[ +2,e2﹣2]
D.[e2﹣2,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com