精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

以直角坐标系的原点为极点, 轴的非负半轴为极轴建立极坐标系,且两坐标系有相同的长度单位.已知点的极坐标为 是曲线 上任意一点,点满足,设点的轨迹为曲线.

(Ⅰ)求曲线的直角坐标方程;

(Ⅱ)若过点的直线的参数方程为参数),且直线与曲线交于 两点,求的值.

【答案】(;(

【解析】试题分析:(1)先化点的直角坐标为,再由曲线得其半径为1,最后确定轨迹为圆,圆心为,半径为1,方程为.(2)直线参数方程中参数具有几何意义,即,因此将直线参数方程代入圆方程化简得,结合韦达定理代入得

试题解析:(1)点的直角坐标为,曲线,即,即

曲线表示以为圆心, 为半径的圆,方程为

2)将代入方程,得

,设两点对应的参数分别为

,易知

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,椭圆的右顶点为,左、右焦点分别为,过点

且斜率为的直线与轴交于点, 与椭圆交于另一个点,且点轴上的射影恰好为点

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过点且斜率大于的直线与椭圆交于两点(),若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正四棱柱中, 为底面的对角线, 的中点.

(1)求证:

(2)求证: 平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点, 轴的正半轴与极轴建立极坐标系,已知曲线的极坐标方程为,过点且倾斜角为的直线与曲线相交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数).

(Ⅰ)求的解析式及单调递减区间;

(Ⅱ)若函数无零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆与y轴的正半轴相交于点M,且椭圆E上相异两点A、B满足直线MA,MB的斜率之积为

(Ⅰ)证明直线AB恒过定点,并求定点的坐标;

(Ⅱ)求三角形ABM的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆与y轴的正半轴相交于点M,且椭圆E上相异两点A、B满足直线MA,MB的斜率之积为

(Ⅰ)证明直线AB恒过定点,并求定点的坐标;

(Ⅱ)求三角形ABM的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体ABCD﹣A1B1C1D1中,AB= , BC=AA1=1,点M为AB1的中点,点P为对角线AC1上的动点,点Q为底面ABCD上的动点(点P、Q可以重合),则MP+PQ的最小值为(  )
A.
B.
C.
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为选拔选手参加“中国谜语大会”,某中学举行了一次“谜语大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为)进行统计.按照 的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在 的数据).

(Ⅰ)求样本容量和频率分布直方图中的 的值;

(Ⅱ)分数在的学生设为一等奖,获奖学金500元;分数在的学生设为二等奖,获奖学金200元.已知在样本中,获一、二等奖的学生中各有一名男生,则从剩下的女生中任取三人,求奖学金之和大于600的概率.

查看答案和解析>>

同步练习册答案