【题目】已知函数f(x)=lnx﹣a(1﹣ ).
(1)若a=1,求f(x)的单调区间;
(2)若f(x)≥0,对任意的x≥1均成立,求实数a的取值范围;
(3)求证:( )1008> .
【答案】
(1)解:f(x)的定义域是(0,+∞),a=1时,f(x)=lnx+ ﹣1,
f′(x)= ,令f′(x)>0,解得:x>1,令f′(x)<0,解得:0<x<1,
∴f(x)在(0,1)递减,在(1,+∞);
(2)解:∵ln x﹣a(1﹣ )≥0,
∴ln x﹣a ≥0,
∴a(x﹣1)≤xlnx,
①当x=1时,上式成立;
②当x>1时,上式可化为a≤ ,
令f(x)= ,则f′(x)= ,
令g(x)=x﹣lnx﹣1,则g′(x)=1﹣ >0,
故g(x)在(1,+∞)上是增函数,
故g(x)>g(1)=1﹣0﹣1=0,
故f′(x)>0,
故f(x)= 在(1,+∞)上是增函数,
而 f(x)= = =1,
故a≤1;
综上所述,a≤1.
(3)证明:由(2)得a=1时,lnx﹣a(1﹣ )≥0对任意的x≥1均成立,
∴lnx>1﹣ ,(x>1),
取x=1+ ,则ln(1+ )>1﹣ ,
即ln > ,
∴ > ,
∴( )1008> .
【解析】(1)求出f(x)的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)化简可得a(x﹣1)≤xlnx,从而讨论,当x>1时,化为a≤ ,从而令f(x)= ,从而化为函数的最值问题;(3)根据lnx>1﹣ ,(x>1),取x=1+ ,代入整理即可.
【考点精析】关于本题考查的利用导数研究函数的单调性和函数的最大(小)值与导数,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】已知定义域为R的函数f(x)= 是奇函数.
(1)求a,b的值;
(2)判断函数f(x)的单调性,并用定义证明;
(3)若对于任意 都有f(kx2)+f(2x﹣1)>0成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中,正确的命题有__________.
①回归直线恒过样本点的中心,且至少过一个样本点;
②将一组数据的每个数据都加一个相同的常数后,方差不变;
③用相关指数来刻画回归效果, 越接近,说明模型的拟合效果越好;
④用系统抽样法从名学生中抽取容量为的样本,将名学生从编号,按编号顺序平均分成组(号, 号, 号),若第组抽出的号码为,则第一组中用抽签法确定的号码为号.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
某学校用简单随机抽样方法抽取了100名同学,对其日均课外阅读时间(单位:分钟)进行调查,结果如下:
t | ||||||
男同学人数 | 7 | 11 | 15 | 12 | 2 | 1 |
女同学人数 | 8 | 9 | 17 | 13 | 3 | 2 |
若将日均课外阅读时间不低于60分钟的学生称为“读书迷”.
(1)将频率视为概率,估计该校4000名学生中“读书迷”有多少人?
(2)从已抽取的8名“读书迷”中随机抽取4位同学参加读书日宣传活动.
(i)求抽取的4位同学中既有男同学又有女同学的概率;
(ii)记抽取的“读书迷”中男生人数为,求的分布列和数学期望
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=aln(x+1)﹣x2 , 在(1,2)内任取两个实数x1 , x2(x1≠x2),若不等式 >1恒成立,则实数a的取值范围为( )
A.(28,+∞)
B.[15,+∞)
C.[28,+∞)
D.(15,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com