精英家教网 > 高中数学 > 题目详情
已知函数(e为自然对数的底数).
(1)设曲线处的切线为,若与点(1,0)的距离为,求a的值;
(2)若对于任意实数恒成立,试确定的取值范围;
(3)当上是否存在极值?若存在,请求出极值;若不存在,请说明理由.
(1)(2)(3)不存在

试题分析:
(1)该问切点横坐标已知,则利用切点在曲线上,带入曲线即可得到切点的纵坐标,对进行求导并得到在切点处的导函数值即为切线的斜率,有切线的斜率,切线又过切点,利用直线的点斜式即可求的切线的方程,利用点到直线的距离公式结合条件点到切线的距离为即可求的参数的值.
(2)该问为恒成立问题可以考虑分离参数法,即把参数a与x进行分离得到,则,再利用函数的导函数研究函数在区间的最大值,即可求的a的取值范围.
(3)根据极值的定义,函数在区间有零点且在零点附近的符号不同,求导可得,设,求求导可以得到的导函数在区间恒为正数,则函数在区间上是单调递增,即可得到函数进而得到恒成立,即在区间上没有零点,进而函数没有极值.
试题解析:
(1),.
处的切线斜率为,         1分
∴切线的方程为,即.       3分
又切线与点距离为,所以
解之得,       5分
(2)∵对于任意实数恒成立,
∴若,则为任意实数时,恒成立;        6分
恒成立,即,在上恒成立,    7分
,        8分
时,,则上单调递增;
时,,则上单调递减;
所以当时,取得最大值,,      9分
所以的取值范围为.
综上,对于任意实数恒成立的实数的取值范围为. 10分
(3)依题意,
所以,      2分
,则,当,
上单调增函数,因此上的最小值为
,      12分
所以在上,
上不存在极值.      14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数(,为自然对数的底数).
(1)若曲线在点处的切线平行于轴,求的值;
(2)求函数的极值;
(3)当的值时,若直线与曲线没有公共点,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中a为常数.
(1)当时,求的最大值;
(2)若在区间(0,e]上的最大值为,求a的值;
(3)当时,试推断方程=是否有实数解.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)当时,证明:
(2)若对恒成立,求实数的取值范围;
(3)当时,证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(1)若,求的极大值点;
(2)若存在单调递减区间,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数与函数在点处有公共的切线,设.
(1) 求的值
(2)求在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的单调减区间是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f(x)=(ax+b)sinx+(cx+d)cosx,若已知f′(x)=xcosx,则f(x)=(    )
A.xsinx
B.xsinx-xcosx
C.xsinx+cosx
D.xcosx

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

记函数的导函数为f¢(x),则f¢(1)的值为     

查看答案和解析>>

同步练习册答案