精英家教网 > 高中数学 > 题目详情

【题目】某人某天的工作是:驾车从地出发,到两地办事,最后返回地,三地之间各路段行驶时间及当天降水概率如下表:

路段

正常行驶所需时间(小时)

上午降水概率

下午降水概率

2

0.3

0.6

2

0.2

0.7

3

0.3

0.9

若在某路段遇到降水,则在该路段行驶的时间需延长1小时.

现有如下两个方案:

方案甲:上午从地出发到地办事,然后到达地, 下午在地办事后返回地;

方案乙:上午从地出发到地办事,下午从地出发到达地,办事后返回.设此人8点从地出发,在各地办事及午餐的累积时间为2小时.

现采用随机数表法获取随机数并进行随机模拟试验,按照以下随机数表,以方框内的数字5为起点,从左向右依次读取数据,若到达某行最后一个数字,则从下一行最左侧数字继续读取,每次读取4位随机数,第1位数表示采取的方案,其中0-4表示采用方案甲,5-9表示采用方案乙;第2-4位依次分别表示当天行驶的三个路段上是否降水,若某路段降水概率为,则表示降水,表示不降水.(符号表示的数集包含

05 26 93 70 60 22 35 85 15 13 92 03 51 59 77 59 56 78 06 83 52 91 05 70 74

07 97 10 88 23099842 99 64 61 71 6299 15 061 29 169358 05 77 05 91

51 26 87 85 85 54 87 66 47 54 73 32 08 11 12 44 95 92 63 16 29 56 24 29 48

26 99 61 65 53 58 37 78 80 70 42 10 50 67 42 32 17 55 85 74 94 44 67 16 94

14 65 52 68 75 87 59 36 22 41 26 78 63 06 55 13 08 27 01 50 15 29 39 39 43

1)利用数据“5129”模拟当天的情况,试推算他当日办完事返回地的时间;

2)利用随机数表依次取出采用甲、乙方案的模拟结果各两组,分别计算甲、乙两个方案的平均时间,并回答哪个方案办完事后能尽早返回.

【答案】119点;(2)甲方案有利于办完事后能更早返回.

【解析】

1)数据“5129”表示采用乙方案,上午路段降水,下午路段降水,路段未降水,由此能求出结果.
2)根据规划,读取的两组甲方案对应数据依次为16932687,求出平均时间为10,读取的两组乙方案对应数据为51295805,求出平均时间为11,从而认为甲方案有利于办完事后能更早返回地.

解:(1)数据“5129”表示采用乙方案,上午路段降水,下午路段降水,路段未降水,故花费正常行驶时间7小时,降水延迟2小时,办事及午餐2小时共计11小时,

故推算返回地的时间为19点;

2)根据规则,读取的两组甲方案对应数据依次为16932687,

数据

上午路段是否降水(0-2表示降水)

上午路段是否降水(0-1表示降水)

下午路段是否降水(0-8表示降水)

总时间

平均时间

1693

10

10

2687

10

类似地,读取的两组乙方案对应数据为51295805,可得

数据

上午路段是否降水(0-2表示降水)

上午路段是否降水(0-1表示降水)

下午路段是否降水(0-8表示降水)

总时间

平均时间

5129

11

11

5805

11

因为10<11,故认为甲方案有利于办完事后能更早返回.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线 )的焦点是椭圆 )的右焦点,且两曲线有公共点

1)求椭圆的方程;

2)椭圆的左、右顶点分别为 ,若过点且斜率不为零的直线与椭圆交于两点,已知直线相较于点,试判断点是否在一定直线上?若在,请求出定直线的方程;若不在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,底面为菱形,底面E为棱的中点,F为棱上的动点.

1)求证:平面

2)若锐二面角的正弦值为,求点F的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为是椭圆短轴的一个顶点,并且是面积为的等腰直角三角形.

(1)求椭圆的方程;

(2)设直线与椭圆相交于两点,过作与轴垂直的直线,已知点,问直线的交点的横坐标是否为定值?若是,则求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在国家积极推动美丽乡村建设的政策背景下,各地根据当地生态资源打造了众多特色纷呈的乡村旅游胜地.某人意图将自己位于乡村旅游胜地的房子改造成民宿用于出租,在旅游淡季随机选取100天,对当地已有的六间不同价位的民宿进行跟踪,统计其出租率),设民宿租金为(单位:元/日),得到如图所示的数据散点图.

1)若用“出租率”近似估计旅游淡季民宿每天租出去的概率,求租金为388元的那间民宿在淡季内的三天中至少有2天闲置的概率.

2)①根据散点图判断,哪个更适合于此模型(给出判断即可,不必说明理由)?根据判断结果求回归方程;

②若该地一年中旅游淡季约为280天,在此期间无论民宿是否出租,每天都要付出的固定成本,若民宿出租,则每天需要再付出的日常支出成本.试用①中模型进行分析,旅游淡季民宿租金约定为多少元时,该民宿在这280天的收益达到最大?

附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为.

参考数据:记

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们把活跃网店数量较多的村庄称为淘宝村,随着电子商务在中国的发展,不少农村出现了一批专业的淘宝村,已知某乡镇有多个淘宝村,现从该乡镇淘宝村中随机抽取家商户,统计他们某一周的销售收入,结果统计如下:

销售收入(收入)

商户数

1)从这家商户中按该周销售收入超过万元与不超过万元分为组,按分层抽样从中抽取家参加经验交流会,并从这家中选家进行发言,求选出的家恰有家销售收入超过万元的概率;

2)若这家商户中有家商户入驻两家网购平台,其中家销售收入高于万元,完成下面的列联表,并判断能否有的把握认为“销售收入是否高于万元与入驻两家网购平台有关”?

入驻两家网购平台

仅入驻一家网购平台

合计

销售收入高于万元

销售收入不高于万元

合计

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,底面四边形ABCD是菱形,对角线ACBD交于点O

求证:平面平面PBD

E为线段PA的中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是等差数列,公差为,前项和为.

1)设,求的最大值.

2)设,数列的前项和为,且对任意的,都有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若有两个极值点,当时,求的最大值.

查看答案和解析>>

同步练习册答案