精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,是曲线段是参数,)的左、右端点,上异于的动点,过点作直线的垂线,垂足为.

1)建立适当的极坐标系,写出点轨迹的极坐标方程;

2)求的最大值.

【答案】(1);(2).

【解析】

1)根据的参数方程可得直角坐标方程,求出端点,,求在处的切线斜率为和与轴的交点坐标,由垂直关系得的轨迹是以线段为直径的圆弧(不含端点),由此建立极坐标系,得出极坐标方程.

(2)设直线与以为圆心,为半径的圆交于两点,,则根据半径相等,由相交弦定理,得,代入,即可得出最大值.

解:(1)如图,曲线段即为抛物线上一段,

端点,,

处的切线斜率为,与轴的交点坐标为.

因为,所以的轨迹是以线段为直径的圆弧(不含端点),

以线段的中点为极点,射线为极轴,建立极坐标系,

点轨迹的极坐标方程为.

(2)设直线与以为圆心,为半径的圆交于两点,,

,

由相交弦定理,得

,

,即时,最大,最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如题所示:扇形ABC是一块半径为2千米,圆心角为60°的风景区,P点在弧BC上,现欲在风景区中规划三条三条商业街道PQQRRP,要求街道PQAB垂直,街道PRAC垂直,直线PQ表示第三条街道。

(1)如果P位于弧BC的中点,求三条街道的总长度;

(2)由于环境的原因,三条街道PQPRQR每年能产生的经济效益分别为每千米300万元、200万元及400万元,问:这三条街道每年能产生的经济总效益最高为多少?(精确到1万元)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为2的正方体中,点是对角线上的点(点不重合),则下列结论正确的个数为(

①存在点,使得平面平面

②存在点,使得平面

③若的面积为,则

④若分别是在平面与平面的正投影的面积,则存在点,使得.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在等腰梯形中,两腰,底边的三等分点,的中点.分别沿将四边形折起,使重合于点,得到如图2所示的几何体.在图2中,分别为的中点.

1)证明:平面.

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一个半圆中有两个互切的内切半圆,由三个半圆弧围成曲边三角形,作两个内切半圆的公切线把曲边三角形分隔成两块,阿基米德发现被分隔的这两块的内切圆是同样大小的,由于其形状很像皮匠用来切割皮料的刀子,他称此为“皮匠刀定理”,如图,若,则阴影部分与最大半圆的面积比为(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1),求的单调区间;

(2)求函数在上的最值;

(3)时,若函数恰有两个不同的零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2),若函数的图象有且仅有一个交点,的值(其中表示不超过的最大整数,.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线),直线交于PQ两点,P关于y轴的对称点,直线y轴交于点

1)若点的一个焦点,求的渐近线方程;

2)若,点P的坐标为,且,求k的值;

3)若,求n关于b的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)求函数的单调区间;

2)使不等式对任意恒成立时最大的记为,求当时,的取值范围.

查看答案和解析>>

同步练习册答案