精英家教网 > 高中数学 > 题目详情
9.如图,已知OPQ是半径为1,圆心角为$\frac{π}{3}$的扇形,C是扇形弧上的动点,ABCD是扇形的内接矩形,记∠COP=α,
(1)求矩形ABCD的面积y关于角α的函数关系式y=f(α);
(2)求y=f(α)的单调递增区间;
(3)问当角α取何值时,矩形ABCD的面积最大?并求出这个最大面积.

分析 (1)先用所给的角表示AB,BC,即可将矩形的面积表示出来,建立三角函数模型;
(2)由-$\frac{π}{2}$+2kπ≤2α+$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,可得-$\frac{π}{3}$+kπ≤α≤$\frac{π}{6}$+kπ,结合0<α<$\frac{π}{3}$,可得y=f(α)的单调递增区间;
(3)根据所建立的模型利用三角函数的性质求最值.

解答 解:(1)如图,在Rt△OBC中,OB=cosα,BC=sinα,
在Rt△OAD中,$\frac{DA}{OA}$=tan60°=$\sqrt{3}$,所以OA=$\frac{\sqrt{3}}{3}$DA=$\frac{\sqrt{3}}{3}$BC=$\frac{\sqrt{3}}{3}$sinα.
所以AB=OB-OA=cosα-$\frac{\sqrt{3}}{3}$sinα.
设矩形ABCD的面积为S,则S=AB•BC=(cosα-$\frac{\sqrt{3}}{3}$sinα)sinα=sinαcosα-$\frac{\sqrt{3}}{3}$sin2α
=$\frac{1}{2}$sin2α+$\frac{\sqrt{3}}{6}$cos2α-$\frac{\sqrt{3}}{6}$=$\frac{\sqrt{3}}{3}$($\frac{\sqrt{3}}{2}$sin2α+$\frac{1}{2}$cos2α)-$\frac{\sqrt{3}}{6}$
=$\frac{\sqrt{3}}{3}$sin(2α+$\frac{π}{6}$)-$\frac{\sqrt{3}}{6}$(0<α<$\frac{π}{3}$).
(2)由-$\frac{π}{2}$+2kπ≤2α+$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,可得-$\frac{π}{3}$+kπ≤α≤$\frac{π}{6}$+kπ,
∵0<α<$\frac{π}{3}$,
∴y=f(α)的单调递增区间是(0,$\frac{π}{6}$);
(3)由于0<α<$\frac{π}{3}$,所以当2α+$\frac{π}{6}$=$\frac{π}{2}$,即α=$\frac{π}{6}$时,S最大=$\frac{\sqrt{3}}{6}$.

点评 本题考查在实际问题中建立三角函数模型,求解问题的关键是根据图形建立起三角模型,将三角模型用所学的恒等式变换公式进行化简.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知命题p:-2<x<10,命题q:x≤1-a或x≥1+a,若非p是q的充分不必要条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.将两颗质地均匀的骰子抛掷一次,记第一颗骰子出现的点数是m,记第二颗骰子出现的点数是n,向量$\overrightarrow a=({m-2,2-n})$,向量$\overrightarrow b=({1,1})$,则向量$\overrightarrow a⊥\overrightarrow b$的概率是$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某几何体的三视图如图所示,则此几何体的体积等于(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{8π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=asinx-bcosx(a,b常数,a≠0,x∈R)在x=$\frac{3π}{4}$处取得最小值,则函数y=f($\frac{π}{4}$-x)是(  )
A.偶函数且它的图象关于点(π,0)对称
B.偶函数且它的图象关于点($\frac{3π}{2}$,0)对称
C.奇函数且它的图象关于点($\frac{3π}{2}$,0)对称
D.奇函数且它的图象关于点(π,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知F为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点,A、B分别为椭圆C的左、上顶点,若BF的垂直平分线恰好过点A,则椭圆C的离心率为$\frac{\sqrt{3}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\frac{a}{{x}^{2}}$+21nx,若当a>0时,f(x)≥2恒成立,则实数a的取值范围是a≥e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|lg($\frac{2x-5}{x+2}$)≤0}
(1)设U=R,求∁UA;
(2)B={x|x<a},若A⊆B,求a的取值范围;
(3)C={x|m+1≤x≤2m-1}满足C⊆A,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知α为钝角,β为锐角,满足cosα=-$\frac{2\sqrt{5}}{5}$,sinβ=$\frac{\sqrt{10}}{10}$,则α-β=$\frac{3π}{4}$.

查看答案和解析>>

同步练习册答案