试题分析:设M(2,b),N(a,2).由
,可得
,即(a﹣2)
2+(b﹣2)
2=1.且1≤a≤2,1≤b≤2.如图所示,建立平面直角坐标系.
又
=(1,b﹣1)•(a﹣1,1)=a+b﹣2.作出可行域,即可得出答案.
如图所示,建立平面直角坐标系.
设M(2,b),N(a,2).∵
,∴
,即(a﹣2)
2+(b﹣2)
2=1.且1≤a≤2,1≤b≤2.
又O(1,1),∴
=(1,b﹣1)•(a﹣1,1)=a+b﹣2.
令a+b﹣2=t,则目标函数b=﹣a+2+t,
作出可行域
,如图2,其可行域是
圆弧.
①当目标函数与圆弧相切与点P时,
,解得t=2﹣
取得最小值;
②当目标函数经过点EF时,t=2+1﹣2=1取得最大值.
∴
.即为
的取值范围.
故答案为
.
点评:本题综合考查了向量的模的计算公式、线性规划等基础知识,及数形结合思想方法.熟练掌握是解题的关键.