精英家教网 > 高中数学 > 题目详情
10.化简求值:
(Ⅰ)${0.064^{-\frac{1}{3}}}-{({-\frac{1}{8}})^0}+{16^{\frac{3}{4}}}+{0.25^{\frac{1}{2}}}$;
(Ⅱ)$\frac{1}{2}lg25+lg2-lg\sqrt{0.1}-{log_2}9×{log_3}2$.

分析 (I)利用指数的运算法则即可得出;
(II)利用对数的运算法则即可得出.

解答 解:(Ⅰ)原式=$(0.4)^{3×(-\frac{1}{3})}$-1+${2}^{4×\frac{3}{4}}$+$0.{5}^{2×\frac{1}{2}}$=$\frac{5}{2}$-1+8+$\frac{1}{2}$=10.
(Ⅱ)原式=lg5+lg2-$\frac{1}{2}lg1{0}^{-1}$-2log23•log32
=1+$\frac{1}{2}$-2
=$-\frac{1}{2}$.

点评 本题考查了指数与对数的运算法则,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知a,b,c分别为△ABC内角A,B,C的对边.且bsinAcosC+csinAcosB=$\frac{\sqrt{3}}{7}$a2,△ABC的面积S=$\frac{5\sqrt{3}}{2}$.
(1)求abc的值;
(2)若A=$\frac{π}{3}$,求b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合A={x|2≤2x≤16},B={x|log${\;}_{\frac{1}{3}}$x<-1}.
(1)求A∩B,∁RB∪A;
(2)已知集合C={x|a+1<x<2a-1},若A∩C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合M={x|0≤x≤2},N={x|x-2=0},则下列说法正确的是(  )
A.N∈MB.N⊆MC.M⊆ND.M∈N

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)定义域为R,f(2+x)=f(2-x),且当x≥2时,$f(x)={(\frac{1}{2})^x}$,则有(  )
A.$f(\frac{1}{2})<f(\frac{3}{2})<f(\frac{8}{3})$B.$f(\frac{1}{2})<f(\frac{8}{3})<f(\frac{3}{2})$C.$f(\frac{3}{2})<f(\frac{1}{2})<f(\frac{8}{3})$D.$f(\frac{8}{3})<f(\frac{3}{2})<f(\frac{1}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知定义域为R的函数f(x),对于x∈R,满足f[f(x)-x2+x]=f(x)-x2+x,设有且仅有一个实数x0,使得f(x0)=x0,则实数x0的值为(  )
A..0B..1C.0或1D..无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列命题中的假命题是(  )
A.?x0∈R,lgx0=0B.?x0∈R,tanx0=0C.?x∈R,x3>0D.?x∈R,2x>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.给出下列六个命题:
(1)若f(x-1)=f(1-x),则函数f(x)的图象关于直线x=1对称.
(2)y=f(x-1)与y=f(1-x)的图象关于直线x=0对称.
(3)y=f(x+3)的反函数与y=f-1(x+3)是相同的函数.
(4)$y={({\frac{1}{2}})^{|x|}}-{sin^2}$x+2015无最大值也无最小值.
(5)y=$\frac{2tanx}{{1-{{tan}^2}x}}$的周期为π.
(6)y=sinx(0≤x≤2π)有对称轴两条,对称中心三个.
则正确命题的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-1,-x),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则x=-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案