精英家教网 > 高中数学 > 题目详情

某种产品的广告费用支出(万元)与销售额(万元)之间有如下的对应数据:


2
4
5
6
8

30
40
60
50
70
x
2
4
5
6
8
y
30
40
60
50
70
 
(1)画出散点图;
(2)求回归直线方程;
(3)据此估计广告费用为9万元时,销售收入的值.
参考公式:回归直线的方程,其中

(1)散点图见解析;(2);(3)销售收入万元.

解析试题分析:(1)将所给数据得出点坐标在坐标系中找出点即可;(2)选 求出,由所给数据根据公式求出b,再由,可得回归方程;(3)广告费为9万元时即时,求出对应的值.
解:(1)作出散点图如下图所示:

(2)


因此回归直线方程为
(3)时,预报的值为(万元).
考点:1.散点图;2.线性回归方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

 
喜爱打篮球
不喜爱打篮球
合计
男生
20
5
25
女生
10
15
25
合计
30
20
50
 
(1)用分层抽样的方法在喜欢打蓝球的学生中抽6人,其中男生抽多少人?
(2)在上述抽取的6人中选2人,求恰有一名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30 min抽取一包产品,称其重量,分别记录抽查数据如下:
甲:102,101,99,98,103,98,99;
乙:110,115,90,85,75,115,110.
(1)这种抽样方法是哪一种?
(2)将这两组数据用茎叶图表示;
(3)将两组数据比较,说明哪个车间的产品较稳定.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

从一批苹果中,随机抽取50个,其重量(单位:g)的频数分布表如下:

分组(重量)
[80,85)
[85,90)
[90,95)
[95,100)
频数(个)
5
10
20
15
 
(1)根据频数分布表计算苹果的重量在[90,95)的频率;
(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?
(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有一个的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)(2011•福建)某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:

X
1
2
3
4
5
f
a
0.2
0.45
b
c
(Ⅰ)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a、b、c的值;
(Ⅱ)在(Ⅰ)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从x1,x2,x3,y1,y2,这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

下表是某市从3月份中随机抽取的天空气质量指数()和“”(直径小于等于微米的颗粒物)小时平均浓度的数据,空气质量指数()小于表示空气质量优良.

日期编号










空气质量指数(










小时平均浓度(










 
(1)根据上表数据,估计该市当月某日空气质量优良的概率;
(2)在上表数据中,在表示空气质量优良的日期中,随机抽取两个对其当天的数据作进一步的分析,设事件为“抽取的两个日期中,当天‘’的小时平均浓度不超过”,求事件发生的概率;
(3)在上表数据中,在表示空气质量优良的日期中,随机抽取天,记为“小时平均浓度不超过的天数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

小区统计部门随机抽查了区内名网友4月1日这天的网购情况,得到如下数据统计表(图(1)).网购金额超过千元的顾客被定义为“网购红人”,网购金额不超过千元的顾客被定义为“非网购红人”.已知“非网购红人”与“网购红人”人数比恰为.
(1)确定的值,并补全频率分布直方图(图(2)).
(2)为进一步了解这名网友的购物体验,从“非网购红人”和“网购红人”中用分层抽样的方法确定人,若需从这人中随机选取人进行问卷调查,设为选取的人中“网购红人”的人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:

 


总计
爱好
40
20
60
不爱好
20
30
50
总计
60
50
110
附: 

0.050
0.010
0.001

3.841
6.635
10.828
 
试考查大学生“爱好该项运动是否与性别有关”,若有关,请说明有多少把握。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

日期
1月
10日
2月
10日
3月
10日
4月
10日
5月
10日
6月
10日
昼夜温差
x(℃)
10
11
13
12
8
6
就诊人数
y(个)
22
25
29
26
16
12
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率.
(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程=x+.
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
(参考公式:==,=-).

查看答案和解析>>

同步练习册答案