精英家教网 > 高中数学 > 题目详情
2.已知函数$f(x)=\sqrt{3}sinωx+cosωx({ω>0})$,x∈R,在曲线y=f(x)与直线y=1的交点中,若相邻交点距离的最小值是$\frac{π}{3}$,则ω=(  )
A.1B.2C.$\frac{2}{3}$D.$\frac{3}{2}$

分析 利用和差公式可得:函数f(x)=2sin(ωx+$\frac{π}{6}$),令2sin(ωx+$\frac{π}{6}$)=1,化为sin(ωx+$\frac{π}{6}$)=$\frac{1}{2}$,解得ωx+$\frac{π}{6}$=2kπ+$\frac{π}{6}$或ωx+$\frac{π}{6}$=2kπ+$\frac{5π}{6}$,k∈Z.由于在曲线y=f(x)与直线y=1的交点中,相邻交点距离的最小值是$\frac{π}{3}$,可得x2-x1=$\frac{2π}{3ω}$=$\frac{π}{3}$,即可得出.

解答 解:函数f(x)=$\sqrt{3}$sinωx+cosωx=2($\frac{\sqrt{3}}{2}$sinωx+$\frac{1}{2}$cosωx)=2sin(ωx+$\frac{π}{6}$),
令2sin(ωx+$\frac{π}{6}$)=1,
化为sin(ωx+$\frac{π}{6}$)=$\frac{1}{2}$,
解得ωx+$\frac{π}{6}$=2kπ+$\frac{π}{6}$或ωx+$\frac{π}{6}$=2kπ+$\frac{5π}{6}$,k∈Z.
∵在曲线y=f(x)与直线y=1的交点中,相邻交点距离的最小值是$\frac{π}{3}$,
∴$\frac{5π}{6}$-$\frac{π}{6}$+2kπ=ω(x2-x1),令k=0,
∴x2-x1=$\frac{2π}{3ω}$=$\frac{π}{3}$,
解得ω=2.
故选:B.

点评 本题考查了三角函数的图象与性质、三角函数方程的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设不等式ax2+5x+b>0的解集是(2,3),求不等式bx2+5x+a>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.正六棱柱ABCDEF-A1B1C1D1E1F1的侧面都是正方形,若底面边长为a,则截面A1DD1的面积为(  )
A.$\sqrt{3}$a2B.2a2C.$\frac{3}{2}$a2D.$\frac{\sqrt{3}}{2}$a2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,已知斜三棱柱ABC-A1B1C1的侧面ACC1A1与底面ABC垂直,$∠ABC=90°,BC=2,AC=2\sqrt{3},A{A_1}⊥{A_1}C,A{A_1}={A_1}C$.
(1)求侧棱AA1与底面ABC所成的角;
(2)求顶点C到平面A1ABB1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知△ABC内有2005个点,其中任意三点不共线,把这2005个点加上△ABC的三个点共2008个点作为顶点,组成互不相叠的小三角形,则一共可组成小三角形的个数为(  )
A.2004B.2009C.4011D.4013

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.直线y=$\frac{1}{2}$与曲线y=2sin(x+$\frac{π}{2}$)cos(x-$\frac{π}{2}$)在y轴右侧的交点自左向右依次记为M1,M2,M3,…,则$\overrightarrow{|{M_1}{M_{13}}}$|等于(  )
A.B.C.12πD.13π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切,切点为P,过点B(-2,0)的动直线l与圆A相交于M,N两点,点M在x轴上方
(1)当|MN|=2$\sqrt{19}$时,求直线l的方程
(2)若△PBM的内切圆的圆心在x轴上,求以MN为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=cos$(\frac{π}{3}x+\frac{π}{3})-2co{s}^{2}\frac{π}{6}x$
(1)求函数f(x)的周期T;
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若函数y=2x2-ax+3有一个零点为$\frac{3}{2}$,则f(1)=0.

查看答案和解析>>

同步练习册答案