精英家教网 > 高中数学 > 题目详情
3.不等式2x2-ax+1>0的解集为R,则实数a的取值范围是-2$\sqrt{2}$<a<2$\sqrt{2}$.

分析 根据题意,利用判别式△<0,列出不等式求出a的取值范围.

解答 解:不等式2x2-ax+1>0的解集为R,
∴△<0,
即a2-8<0,
解得-2$\sqrt{2}$<a<2$\sqrt{2}$;
∴实数a的取值范围是-2$\sqrt{2}$<a<2$\sqrt{2}$.
故答案为:-2$\sqrt{2}$<a<2$\sqrt{2}$.

点评 本题考查了不等式恒成立问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若直线x+y=0与圆x2+(y-a)2=1相切,则a的值为(  )
A.1B.±1C.$\sqrt{2}$D.±$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,菱形ABCD的边长为1,∠DAB=60°,E,F分别为DC、BC的中点,则$\overrightarrow{AF}•\overrightarrow{EF}$=$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列关系中正确的是(  )
A.sin15°<sin163°<cos74°B.sin15°<cos74°<sin163°
C.sin163°<sin15°<cos74°D.cos74°<sin163°<sin15°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数$f(x)=lg\frac{ax+1}{1-2x}$是奇函数,则实数a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若x>0,y>0,且$\frac{2}{x}$+$\frac{8}{y}$=1,求xy及x+y的最小值,何时取到?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知,△ABC内有一点F,分别以AB、AC为底边向外作等腰三角形DAB、AEC,且∠BAD=∠BCF,∠ACE=∠CBF.求证:DE平分AF.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知平面向量$\vec a,\vec b,\vec c$满足$|\vec a|=1,\vec a•\vec b=\vec b•\vec c=1,\vec a•\vec c=2$,则$|\vec a+\vec b+\vec c|$的最小值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.过双曲线$C:\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的右焦点F作x轴的垂线,交双曲线C于M、N两点,A为左顶点,这∠MAN=θ,双曲线C的离心率为f(θ),则$f(\frac{2π}{3})-f(\frac{π}{3})$=$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案