精英家教网 > 高中数学 > 题目详情
2.已知f(x)=Asin(wx+φ)$(x∈R,A>0,w>0,0<ϕ<\frac{π}{2})$的图象与x轴的交点中,相邻两交点距离为$\frac{π}{2}$,且图象上一个最低点为$M(\frac{2π}{3},-2)$;
(1)求f(x)的解析式;
(2)将f(x)的图象向右平移$\frac{π}{12}$个单位,再向上平移1个单位,得到y=g(x)的图象,若y=g(x)在[0,b]上至少有4个零点,求b的最小值.

分析 (1)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值.
(2)根据函数y=Asin(ωx+φ)的图象变换规律,g(x)=2sin2x+1,则函数y=sin2x的图象和直线y=-$\frac{1}{2}$在[0,b]上至少有4个交点,由$\frac{23π}{6}$≤2b<$\frac{31π}{6}$,求得b的最小值.

解答 解:(1)根据函数的图象与x轴的交点中,相邻两交点距离为$\frac{π}{2}$,可得$\frac{T}{2}$=$\frac{π}{w}$=$\frac{π}{2}$,∴w=2.
再根据图象上一个最低点为$M(\frac{2π}{3},-2)$,可得A=2,2×$\frac{2π}{3}$+φ=$\frac{3π}{2}$,φ=$\frac{π}{6}$,
∴f(x)=2sin(2x+$\frac{π}{6}$).
(2)将f(x)的图象向右平移$\frac{π}{12}$个单位,再向上平移1个单位,得到y=g(x)=2sin[2(x-$\frac{π}{12}$)+$\frac{π}{6}$]+1=2sin2x+1 的图象,
若y=g(x)在[0,b]上至少有4个零点,则函数y=sin2x的图象和直线y=-$\frac{1}{2}$在[0,b]上至少有4个交点,
故$\frac{23π}{6}$≤2b<$\frac{31π}{6}$,求得b的最小值为$\frac{23π}{12}$.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值.函数y=Asin(ωx+φ)的图象变换规律,方程根的存在性以及个数判断,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知向量$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow{b}$=($\sqrt{2}$,$\sqrt{2}$),若$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{8}{5}$且$\frac{π}{4}$<x<$\frac{π}{2}$,求$\frac{sin2x(1+tanx)}{1-tanx}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.体积为$\frac{4}{3}π$的球O放置在棱长为4的正方体ABCD-A1B1C1D1上,且与上表面A1B1C1D1相切,切点为该表面的中心,则四棱锥O-ABCD的外接球的半径为(  )
A.$\frac{10}{3}$B.$\frac{33}{10}$C.$\frac{23}{6}$D.$\frac{41}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知公比不为1的等比数列{an}的前n项和为Sn,S6=$\frac{63}{32}$,且-a2,a4,3a3成等差数列.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知两个不共线向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,且$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$+λ$\overrightarrow{{e}_{2}}$,$\overrightarrow{BC}$=3$\overrightarrow{{e}_{1}}$+4$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=2$\overrightarrow{{e}_{1}}$-7$\overrightarrow{{e}_{2}}$,若A,B,D三点共线,则λ的值为-$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设函数f(x)是定义在(1,+∞)上的一个函数,且有f(x)=2f($\frac{1}{x}$)$\sqrt{x}$-1,则f(x)=$\frac{2}{3}$$\sqrt{x}$+$\frac{1}{3}$,x∈(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.命题“?x0>-1,x02+x0-2016>0”的否定是?x>-1,x2+x-2016≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,∠A,∠B,∠C所对边的长分别为a,b,c.已知a+$\sqrt{2}$c=2b,sinB=$\sqrt{2}$sinC,则$sin\frac{C}{2}$=$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.等腰梯形ABCD,上底CD=1,腰AD=CB=$\sqrt{2}$,下底AB=3,以下底所在直线为x轴,则由斜二侧画法画出的直观图A′B′C′D′的面积为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\frac{{\sqrt{2}}}{4}$D.2

查看答案和解析>>

同步练习册答案