【题目】已知函数是奇函数,,当时,,则不等式的解集为_______.
【答案】
【解析】
由题意构造函数g(x)=xf(x)求出g′(x),根据条件判断出g(x)的单调性和奇偶性,由f(2)=0得g(2)=0,结合g(x)单调性判断出各个区间上的符号,从而可得到f(x)在各个区间上的符号,即可求出不等式f(x)<0的解集.
设g(x)=xf(x),则g′(x)=xf′(x)+f(x),
∵当x<0时,有xf′(x)+f(x)>0,则g′(x)>0,
∴g(x)在(﹣∞,0)上单调递增,
∵函数f(x)是R上奇函数,∴函数g(x)是R上的偶函数,
则g(x)在(0,+∞)上单调递减,
又f(2)=0,则g(2)=0,
∴在(0,2)内恒有g(x)>0;在(2,+∞)内恒有g(x)<0,
在(﹣∞,﹣2)内恒有g(x)<0;在(﹣2,0)内恒有g(x)>0,
∴在(0,2)内恒有f(x)>0;在(2,+∞)内恒有f(x)<0,
在(﹣∞,﹣2)内恒有f(x)>0;在(﹣2,0)内恒有f(x)<0,
∴不等式f(x)<0的解集是(﹣2,0)∪(2,+∞),
故答案为.
科目:高中数学 来源: 题型:
【题目】以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,已知直线的参数方程是 (m>0,t为参数),曲线的极坐标方程为.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)若直线与轴交于点,与曲线交于点,且,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:
(1)仓库顶部面积的最大允许值是多少?
(2)为使达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥PABCD中,侧面PAD是正三角形,底面ABCD是菱形,且∠ABC=60°,M为PC的中点.
(1)求证:PC⊥AD.
(2)在棱PB上是否存在一点Q,使得A,Q,M,D四点共面?若存在,指出点Q的位置并证明;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国家放开计划生育政策,鼓励一对夫妇生育2个孩子.在某地区的100000对已经生育了一胎夫妇中,进行大数据统计得,有100对第一胎生育的是双胞胎或多胞胎,其余的均为单胞胎.在这99900对恰好生育一孩的夫妇中,男方、女方都愿意生育二孩的有50000对,男方愿意生育二孩女方不愿意生育二孩的有对,男方不愿意生育二孩女方愿意生育二孩的有对,其余情形有对,且.现用样本的频率来估计总体的概率.
(1)说明“其余情形”指何种具体情形,并求出,,的值;
(2)该地区为进一步鼓励生育二孩,实行贴补政策:凡第一胎生育了一孩的夫妇一次性贴补5000元,第一胎生育了双胞胎或多胞胎的夫妇只有一次性贴补15000元.第一胎已经生育了一孩再生育了二孩的夫妇一次性再贴补20000元.这种补贴政策直接提高了夫妇生育二孩的积极性:原先男方或女方中只有一方愿意生育二孩的夫妇现在都愿意生育二孩,但原先男方、女方都不愿意生育二孩的夫妇仍然不愿意生育二孩.设为该地区的一对夫妇享受的生育贴补,求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com