精英家教网 > 高中数学 > 题目详情
15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1(-1,0)、F2(1,0),椭圆的离心率为$\frac{\sqrt{3}}{3}$.
(1)求椭圆C的标准方程;
(2)过点F2的直线l与椭圆C相交于A,B两点,求△F1AB的面积的最大值.

分析 (1)由椭圆的焦点,离心率e,列出方程组,求出a,b,由此能求出椭圆C的方程.
(2)设直线l的方程为x=ty+1,代入2x2+3y2=6得得(2t2+3)y2+4ty-4=0,
由此利用韦达定理、弦长公式、换元法、函数单调性,结合已知条件能求出△F1PQ面积的最小值.

解答 解:(1)∵椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1(-1,0)、F2(1,0),
∴2c=2,c=1,又∵e=$\frac{c}{a}=\frac{\sqrt{3}}{3}$,∴$a=\sqrt{3}$,∵a2=b2+c2,∴$b=\sqrt{2}$
椭圆C的标准方程为:$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$.
(2)设直线l的方程为x=ty+1,代入2x2+3y2=6得得(2t2+3)y2+4ty-4=0,
∴y1+y2=$\frac{-4t}{2{t}^{2}+3}$,y1y2=$\frac{-4}{2{t}^{2}+3}$,
△F1AB的面积s=$\frac{1}{2}$2c•|y1-y2|=|y1-y2|=$\frac{4\sqrt{3}•\sqrt{{t}^{2}+1}}{2{t}^{2}+3}$,
令u=$\sqrt{1+{t}^{2}}$∈[1,+∞),则s=$\frac{4\sqrt{3}u}{2{u}^{2}+1}$=$\frac{4\sqrt{3}}{2u+\frac{1}{u}}$,
∵y=2u+$\frac{1}{u}$在[1,+∞)上是增函数,
∴当μ=1,即t=0时,△F1AB的面积的最小值是$\frac{4\sqrt{3}}{3}$.

点评 题考查椭圆方程的求法,考查三角形面积的最小值的求法,注意韦达定理、弦长公式、换元法、函数单调性的合理运用.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设集合A={x|2m-1<x<m},集合B={x|-4≤x≤5}.
(Ⅰ)若m=-3,求A∪B;
(Ⅱ)若A∩B=∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,tanA=$\frac{1}{2}$,cosB=$\frac{3\sqrt{10}}{10}$,则tanC=(  )
A.-2B.1C.$\sqrt{3}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.数列{an}中,对任意自然数n∈N*,恒有a1+a2+…+an=2n-1,则a12+a22+a32…+an2=$\frac{1}{3}$(4n-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=|x-1|,若方程f(x)=$\sqrt{x+a}$有4个不相等的实根,则实数a的取值范围是(  )
A.(-$\frac{5}{4}$,1)B.($\frac{3}{4}$,1)C.($\frac{4}{5}$,1)D.(-1,$\frac{3}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在二面角α-l-β的棱l上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直于AB,若二面角α-l-β的大小为$\frac{π}{3}$,AB=AC=2,BD=3,则CD=(  )
A.$\sqrt{11}$B.$\sqrt{14}$C.$2\sqrt{5}$D.$\sqrt{23}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设命题p:?x∈R,x2-2x>a,其中a∈R,命题q:?x∈R,x2+2ax+2-a=0.如果“x2>1p”为假命题,“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.把函数f(x)=sin(-3x+$\frac{π}{6}$)的周期扩大为原来的2倍,再将其图象向右平移$\frac{π}{3}$个单位长度,则所得图象的解析式为(  )
A.y=sin($\frac{π}{6}$-6x)B.y=cos6xC.y=sin($\frac{2π}{3}$-$\frac{3x}{2}$)D.y=sin(-$\frac{π}{6}$-$\frac{3}{2}$x)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若复数z满足z2=i,则为|z|=1.

查看答案和解析>>

同步练习册答案