精英家教网 > 高中数学 > 题目详情

【题目】某校高三年级实验班与普通班共1000名学生,其中实验班学生200人,普通班学生800人,现将高三一模考试数学成绩制成如图所示频数分布直方图,按成绩依次分为5组,其中第一组([0, 30)),第二组([30, 60)),第三组([60, 90)),的频数成等比数列,第一组与第五组([120, 150))的频数相等,第二组与第四组([90, 120))的频数相等。

(1)求第三组的频率;

(2)已知实验班学生成绩在第五组,在第四组,剩下的都在第三组,试估计实验班学生数学成绩的平均分;

(3)在(2)的条件下,按分层抽样的方法从第5组中抽取5人进行经验交流,再从这5人中随机抽取3人在全校师生大会上作经验报告,求抽取的3人中恰有一个普通班学生的概率。

【答案】(1)0.4;(2)114;(3)

【解析】分析:(1)根据频率分布直方图结合等比数列的基本性质可得第三组的频率;

(2)根据题意明确各组人数,再利用平均数公式可得结果;

(3)利用古典概型概率公式即可得到抽取的3人中恰有一个普通班学生的概率.

详解:(1)设公比为,则根据题意可得 2(100+100)+1002=1000,

整理得2+2-8=0,解得

∴第三组的频数为 400,频率为

(2)由题意实验班学生成绩在第五组有 80 人,在第四组有 100 人,在第三组有 20 人,

∴估计平均分

(3)第 5 组中实验班与普通班的人数之比为 4∶1,∴抽取的 5 人中实验班有 4 人,普通班有 1 人,

设实验班的 4 人为 ABCD,普通班 1 人为 a,则 5 人中随机抽取 3 人的结果有:ABCABDABaACDACaADaBCDBCaBDaCDa,共 10 种,其中恰有一个普通班学生有 6 种结果,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某奶茶公司对一名员工进行测试以便确定其考评级别.公司准备了两种不同的奶茶共5 杯,其颜色完全相同,并且其中3杯为奶茶,另外2杯为奶茶,公司要求此员工一一品尝后,从5杯奶茶中选出2杯奶茶.若该员工2杯都选奶茶,则评为优秀;若2 杯选对1奶茶,则评为良好;否则评为及格.假设此人对两种奶茶没有鉴别能力.

(Ⅰ)求此人被评为优秀的概率;()求此人被评为良好及以上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列中,,公比,用表示它的前项之积:,则中最大的是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(改编)已知正数数列的前项和为,且满足;在数列中,

(1)求数列的通项公式;

(2)设,数列的前项和为. 若对任意,存在实数,使恒成立,求的最小值;

(3)记数列的前项和为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C b0)的左、右顶点分别为A1A2,上、下顶点分别为B2B1O为坐标原点,四边形A1B1A2B2的面积为4,且该四边形内切圆的方程为

(Ⅰ)求椭圆C的方程;

(Ⅱ)若MN是椭圆C上的两个不同的动点,直线OMON的斜率之积等于,试探求△OMN的面积是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)证明当时,关于的不等式恒成立;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)证明函数f ( x )的图象关于轴对称;

2)判断上的单调性,并用定义加以证明;

3)当x12]时函数f (x )的最大值为,求此时a的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中,是边长为的等边三角形,分别是的中点

)求证:平面

)求证:平面平面

)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知n为正整数,数列{an}满足an>0,4(n+1)an2﹣nan+12=0,设数列{bn}满足bn=
(1)求证:数列{ }为等比数列;
(2)若数列{bn}是等差数列,求实数t的值:
(3)若数列{bn}是等差数列,前n项和为Sn , 对任意的n∈N* , 均存在m∈N* , 使得8a12Sn﹣a14n2=16bm成立,求满足条件的所有整数a1的值.

查看答案和解析>>

同步练习册答案