精英家教网 > 高中数学 > 题目详情
5.如图,在梯形ABCD中,AB∥CD,AB=4,AD=DC=CB=2,四边形ACFE是矩形,AE=1,平面ACFE⊥平面ABCD,点G是BF的中点.
(1)求证:CG∥平面ADF;
(2)直线BE与平面ACFE所成角的正切值.

分析 (1)连结CE∩AF=O,连结OD,OG,推导出四边形CDOG是平行四边形,从而CG∥OD,由此能证明CG∥平面ADF.
(2)BC⊥平面ACFE,BE在平面ACFE上和射影为EC,BE与平面ACFE所成的角为∠BEC.由此能求出直线BE与平面ACFE所成角的正切值.

解答 证明:(1)连结CE∩AF=O,连结OD,OG,
∵在梯形ABCD中,AB∥CD,AB=4,AD=DC=CB=2,G是BF的中点,
∴OG$\underset{∥}{=}$$\frac{1}{2}$AB,CD$\underset{∥}{=}$$\frac{1}{2}$AB,∴OG$\underset{∥}{=}$CD,
∴四边形CDOG是平行四边形,
∴CG∥OD,
又OD?平面ADF,CG?平面ADF,
∴CG∥平面ADF.
解:(2)由(1)可知:BC⊥平面ACFE,BE在平面ACFE上和射影为EC,
BE与平面ACFE所成的角为∠BEC.
在△BCE中,∠BCE为直角,BC=2,
由勾股定理知:EC=3,
在△BCF中:tan∠BEC=$\frac{2}{3}$,
∴直线BE与平面ACFE所成角的正切值为$\frac{2}{3}$.

点评 本题考查线面平行的证明,考查直线与平面所成角的正切值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x≥0}\\{-2x,x<0}\end{array}\right.$,若函数g(x)=f(f(x))+k在x∈R上有且仅有一个零点,则实数k的取值范围是(  )
A.(e,+∞)B.(1,e)C.(-∞,-e)D.(-e,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知双曲线的渐近线方程为$y=±\sqrt{3}x$,一个焦点为$(0,-2\sqrt{2})$,则双曲线的标准方程是$\frac{{y}^{2}}{6}$-$\frac{{x}^{2}}{2}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.当三条直线l1:3x+my-1=0,l2:3x-2y-5=0,l3:6x+y-5=0不能围成三角形时,实数m的取值是±2或$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=1,
(1)若|$\overrightarrow{a}$-$\overrightarrow{b}$|=2,试求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦值.
(2)若对一切实数x,|$\overrightarrow{a}$+x$\overrightarrow{b}$|≥|$\overrightarrow{a}$+$\overrightarrow{b}$|恒成立,求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知F是抛物线y2=4x的焦点,A、B是该抛物线上的点,|AF|+|BF|=5,则 线段AB的中点的横坐标为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若a>b,则下列正确的是(  )
①a2>b2    
②ac>bc    
③ac2>bc2   
④a-c>b-c.
A.B.②③C.①④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=$\sqrt{10-3x}$+lg(2x-4)的定义域是(  )
A.(2,$\frac{10}{3}$]B.[2,$\frac{10}{3}$]C.(2,+∞)D.[$\frac{10}{3}$,+∞]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数$f(x)=\left\{{\begin{array}{l}{{{log}_2}x,x>0}\\{{3^x},x≤0}\end{array}}\right.$,则$f[{f({\frac{1}{4}})}]$=$\frac{1}{9}$.

查看答案和解析>>

同步练习册答案