精英家教网 > 高中数学 > 题目详情

已知x,y,z∈R,x2+y2+z2=3,求x+2y+2z的最大值.

解:因为已知x2+y2+z2=3根据柯西不等式(ax+by+cz)2≤(a2+b2+c2)(x2+y2+z2)构造得:
即(x+2y+2z)2≤(x2+y2+z2)(12+22+22)≤3×9=27
故x+2y+2z≤
分析:分析题目已知x2+y2+z2=3,求x+2y+2z的最大值.考虑到应用柯西不等式(ax+by+cz)2≤(a2+b2+c2)(x2+y2+z2),首先构造出柯西不等式求出(x+2y+2z)2的最大值,开平方根即可得到答案.
点评:此题主要考查柯西不等式的应用问题,对于此类题目有很多解法,但大多数比较繁琐,而用柯西不等式求解非常简练,需要同学们注意掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

11、已知x,y,z∈R,x2+y2+z2=1,则x+2y+2z的最大值为
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y,z∈R,有下列不等式:
(1)x2+y2+z2+3≥2(x+y+z);(2)
x+y
2
xy
;(3)|x+y|≤|x-2|+|y+2|;(4)x2+y2+z2≥xy+yz+zx.
其中一定成立的不等式的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

[选做题]在下面A,B,C,D四个小题中只能选做两题,每小题10分,共20分.
A.选修4-1:几何证明选讲
如图,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连接AD交⊙O于点E,连接BE与AC交于点F,判断BE是否平分∠ABC,并说明理由.
B.选修4-2:短阵与变换
已知矩阵M=
1
2
0
02
,矩阵M对应的变换把曲线y=sinx变为曲线C,求C的方程.
C.选修4-4:坐标系与参数方程
已知曲线C的极坐标方程是ρ=4sin(θ+
π
4
)
,求曲线C的普通方程.
D.选修4-5:不等式选讲
已知x,y,z∈R,且x+y+z=3,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区一模)已知x,y,z∈R,若-1,x,y,z,-3成等差数列,则x+y+z的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y,z∈R,且x+y+z=1,x2+y2+z2=
1
2
,证明:x,y,z∈[0,
2
3
].

查看答案和解析>>

同步练习册答案