精英家教网 > 高中数学 > 题目详情

已知集合,,设是等差数列的前项和,若的任一项,且首项中的最大数, .
(1)求数列的通项公式;
(2)若数列满足,求的值.

(1));(2).

解析试题分析:(1)首先由题设知: 集合中所有元素可以组成以为首项,为公差的递减等差数列;集合中所有的元素可以组成以为首项,为公差的递减等差数列.
得到中的最大数为,得到等差数列的首项.
通过设等差数列的公差为,建立的方程组,
根据,求得
由于中所有的元素可以组成以为首项,为公差的递减等差数列,
所以,由,得到.
(2)由(1)得到
于是可化为等比数列的求和.
试题解析:(1)由题设知: 集合中所有元素可以组成以为首项,为公差的递减等差数列;集合中所有的元素可以组成以为首项,为公差的递减等差数列.
由此可得,对任意的,有
中的最大数为,即             3分
设等差数列的公差为,则,
因为, ,即
由于中所有的元素可以组成以为首项,为公差的递减等差数列,
所以,由,所以 
所以数列的通项公式为)        8分
(2)           9分
于是有   

     12分
考点:等差数列的通项公式、求和公式,一元一次不等式的解法,等比数列的求和公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知等差数列{an}中,a5=12,a20=-18.
(1)求数列{an}的通项公式;
(2)求数列{|an|}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列中,若为常数),则称数列.
(1)若数列数列,,写出所有满足条件的数列的前项;
(2)证明:一个等比数列为数列的充要条件是公比为
(3)若数列满足,设数列的前项和为.是否存在
正整数,使不等式对一切都成立?若存在,求出的值;
若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若数列{an}满足an+1=an+an+2(n∈N*),则称数列{an}为“凸数列”.
(1)设数列{an}为“凸数列”,若a1=1,a2=-2,试写出该数列的前6项,并求出前6项之和;
(2)在“凸数列”{an}中,求证:an+3=-an,n∈N*
(3)设a1=a,a2=b,若数列{an}为“凸数列”,求数列前2011项和S2011.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,.
(1)求证:是等比数列,并求的通项公式
(2)数列满足,数列的前n项和为,若不等式对一切恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}中,a1=1,前n项和Sn=an.
(1)求a2,a3;
(2)求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知公差不为0的等差数列的前3项和=9,且成等比数列
(1)求数列的通项公式和前n项和
(2)设为数列的前n项和,若对一切恒成立,求实数的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是正数组成的数列,,且点在函数的图象上.
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列满足,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

三个不同的数成等差数列,其和为6,如果将此三个数重新排列,他们又可以成等比数列,求这个等差数列。

查看答案和解析>>

同步练习册答案