精英家教网 > 高中数学 > 题目详情

【题目】如图,定义在[﹣1,2]上的函数f(x)的图象为折线段ACB,

(1)求函数f(x)的解析式;
(2)请用数形结合的方法求不等式f(x)≥log2(x+1)的解集,不需要证明.

【答案】
(1)解:根据图象可知点A(﹣1,0),B(0,2),C(2,0),所以


(2)解:根据(1)可得函数f(x)的图象经过点(1,1),而函数log2(x+1)也过点(1,1),

函数log2(x+1)的图象可以由log2x左移1个单位而来,

如图所示,所以根据图象可得不等式f(x)≥log2(x+1)的解集是(﹣1,1]


【解析】(1)利用待定系数法求函数f(x)的解析式;(2根据函数的图象确定函数值对应的取值范围.
【考点精析】解答此题的关键在于理解函数单调性的性质的相关知识,掌握函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sinx+ cosx.求:
(1)f(x)图象的对称中心的坐标;
(2)f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出盒该产品获利润元;未售出的产品,每盒亏损.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示,该同学为这个开学季购进了盒该产品,以(单位:盒, )表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.

1)根据直方图估计这个开学季内市场需求量的中位数;

2)将表示为的函数;

3)根据直方图估计利润不少于元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个分段函数可利用函数 来表示,例如要表示一个分段函数 ,可将函数g(x)表示为g(x)=xS(x﹣2)+(﹣x)S(2﹣x).现有一个函数f(x)=(﹣x2+4x﹣3)S(x﹣1)+(x2﹣1)S(1﹣x).
(1)求函数f(x)在区间[0,4]上的最大值与最小值;
(2)若关于x的不等式f(x)≤kx对任意x∈[0,+∞)都成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=ax3+bx2+cx+d是实数集R上的偶函数,并且f(x)<0的解为(﹣2,2),则 的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x),若存在x∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+(b﹣1)(a≠0).
(1)当a=1,b=2时,求函数f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;
(3)在(2)的条件下,若f(x)的两个不动点为x1 , x2 , 且f(x1)+x2= ,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)在定义域(﹣ ,3)内可导,其图像如图所示.记y=f(x)的导函数为y=f′(x),则不等式 ≤0的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品的广告费用x与销售额y的统计数据如下表

广告费用x(万元)

4

2

3

5

销售额y(万元)

49

26

39

54

根据上表可得回归方程 = x+ 为9.4,据此模型预报广告费用为6万元时销售额为( )
A.63.6万元
B.65.5万元
C.67.7万元
D.72.0万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出定义:若 m﹣ <x≤m+ (其中m为整数),则m叫做离实数x最近的整数,记作{x},即{x}=m.在此基础上给出下列关于函数f(x)=x﹣{x}的四个命题:
①函数y=f(x)的定义域是R,值域是(﹣ ]
②函数y=f(x)的图象关于y轴对称;
③数y=f(x)的图象关于坐标原点对称;
④函数y=f(x)在(﹣ ]上是增函数;
则其中正确命题是(填序号).

查看答案和解析>>

同步练习册答案