精英家教网 > 高中数学 > 题目详情
在四面体中,三组对棱棱长分别相等且依次为、15,则此四面体的外接球的体积为________
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

( 14分)在如图的多面体中,⊥平面,的中点.
(1) 求证:平面
(2) 求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角中,四边形是边长为的正方形,上的点,且⊥平面
(Ⅰ)求证:⊥平面
(Ⅱ)求二面角的大小;
(Ⅲ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

半径为1的球面上的四点A,B,C,D是正四面体的顶点,则A与B两点间的球面距离为
A.arccos(-)B.arccos(-)C.arccos(-)D.arccos(-)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,三棱柱的所有棱长都相等,且底面的中点,
(Ⅰ)求证:
(Ⅱ)求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图6,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,EF⊥PB交PB于点F.

(Ⅰ) 若PD=DC=2求三棱锥A-BDE的体积;
(Ⅱ) 证明PA∥平面EDB;
(Ⅲ) 证明PB⊥平面EFD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,在直三棱柱中,为的中点.(1)求证:⊥平面;(2)设上一点,试确定的位置,使平面⊥平面,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

“如果一条直线与一个平面垂直,则称这条直线与这个平面构成一组正交线面对;如果两个平面互相垂直,则称这两个平面构成一组正交平面对.”在正方体的12条棱和6个表面中,能构成正交线面对和正交平面对的组数分别是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,中点。(1)求证:平面
(2)在线段上是否存在一点,使二面角的平面角的余弦值为?若存在,确定点位置;若不存在,说明理由。

查看答案和解析>>

同步练习册答案