精英家教网 > 高中数学 > 题目详情

已知椭圆与直线相交于两点.
(1)若椭圆的半焦距,直线围成的矩形的面积为8,
求椭圆的方程;
(2)若为坐标原点),求证:
(3)在(2)的条件下,若椭圆的离心率满足,求椭圆长轴长的取值范围.

(1)
(2)结合韦达定理来加以证明,联立方程组得到。
(3)

解析试题分析:解:(1)由已知得:    解得          3分
所以椭圆方程为:            4分
(2)设,由

,得
                   7分
,得              8分
    
,故            9分
(3)由(2)得   由,得
                        12分
,∴
所以椭圆长轴长的取值范围为       14分
考点:直线与椭圆的位置关系
点评:主要是考查了直线与椭圆的位置关系的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知抛物线的焦点为,点是抛物线上的一点,且其纵坐标为4,
(Ⅰ)求抛物线的方程;
(Ⅱ) 设点是抛物线上的两点,的角平分线与轴垂直,求的面积最大时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:的左、右焦点分别为F1、F2,上顶点为A,△AF1F2为正三角形,且以线段F1F2为直径的圆与直线相切.
(Ⅰ)求椭圆C的方程和离心率e;
(Ⅱ)若点P为焦点F1关于直线的对称点,动点M满足. 问是否存在一个定点T,使得动点M到定点T的距离为定值?若存在,求出定点T的坐标及此定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,点是椭圆)的左焦点,点分别是椭圆的左顶点和上顶点,椭圆的离心率为,点轴上,且,过点作斜率为的直线与由三点,确定的圆相交于两点,满足

(1)若的面积为,求椭圆的方程;
(2)直线的斜率是否为定值?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的左焦点为F, 离心率为, 过点F且与x轴垂直的直线被椭圆截得的线段长为.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 设A, B分别为椭圆的左右顶点, 过点F且斜率为k的直线与椭圆交于C, D两点. 若, 求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义:设分别为曲线上的点,把两点距离的最小值称为曲线的距离.
(1)求曲线到直线的距离;
(2)已知曲线到直线的距离为,求实数的值;
(3)求圆到曲线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知椭圆的中心在原点,焦点在轴上,短轴长为,离心率为.
(I)求椭圆的方程;
(II) 为椭圆上满足的面积为的任意两点,为线段的中点,射线交椭圆与点,设,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

分别是椭圆:的左、右焦点,过倾斜角为的直线 与该椭圆相交于P,两点,且.
(Ⅰ)求该椭圆的离心率;
(Ⅱ)设点 满足,求该椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆过点,上、下焦点分别为
向量.直线与椭圆交于两点,线段中点为
(1)求椭圆的方程;
(2)求直线的方程;
(3)记椭圆在直线下方的部分与线段所围成的平面区域(含边界)为,若曲线
与区域有公共点,试求的最小值.

查看答案和解析>>

同步练习册答案