精英家教网 > 高中数学 > 题目详情

【题目】已知函数 .

(1)若,求函数的单调区间;

(2)若,则当时,函数的图象是否总在直线上方?请写出判断过程.

【答案】(1)见解析.

(2)见解析.

【解析】

(1)求出函数的导数,通过讨论m的范围,求出函数的单调区间即可;

(2)令g(x)=x,讨论m的范围,根据函数的单调性求出g(x)的最大值和f(x)的最小值,结合函数恒成立分别判断即可证明结论.

(1)函数定义域为

.

①当,即时,,此时上单调递增;

②当,即

时,,此时单调递增,

时,,此时单调递减,

时,,此时单调递增.

③当,即时,,此时单调递增,

时,,此时单调递减,

时,,此时单调递增.

综上所述,①当时,上单调递增,

②当时,上单调递增,上单调递减,

③当时,上单调递增,上单调递减.

(2)当时,由(1)知上单调递增,在上单调递减.

.

①当时,,所以函数图象在图象上方.

②当时,函数单调递减,所以其最小值为最大值为,所以下面判断的大小,即判断的大小,

其中

,则

,所以单调递增;

所以故存在

使得

所以上单调递减,在单调递增,

所以

所以时,

,也即

所以函数的图象总在直线上方.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在多面体底面是梯形四边形是正方形..

(1)求证平面平面

(2)为线段上一点试问在线段上是否存在一点使得平面,若存在试指出点的位置若不存在说明理由?

(3)(2)的条件下求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)正方体的棱长扩大到原来的n倍,则其表面积扩大到原来的______倍,体积扩大到原来的______倍;

2)球的半径扩大到原来的n倍,则其表面积扩大到原来的_____倍,体积扩大到原来的_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数,函数.

(1)当时,求函数的零点个数;

(2)若函数与函数的图象分别位于直线的两侧,求的取值集合

(3)对于,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某篮球队对篮球运动员的篮球技能进行统计研究,针对篮球运动员在投篮命中时,运动员在篮筐中心的水平距离这项指标,对某运动员进行了若干场次的统计,依据统计结果绘制如下频率分

布直方图:

(1)依据频率分布直方图估算该运动员投篮命中时,他到篮筐中心的水平距离的中位数;

(2)若从该运动员投篮命中时,他到篮筐中心的水平距离为2到5米的这三组中,用分层抽样的方法抽取7次成绩(单位:米,运动员投篮命中时,他到篮筐中心的水平距离越远越好),并从抽到的这7次成绩中随机抽取2次.规定:这2次成绩均来自到篮筐中心的水平距离为4到5米的这一组,记 1分,否则记0分.求该运动员得1分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数a为正常数),且函数的图象与y轴的交点重合.

1)求a实数的值

2)若b为常数)试讨论函数的奇偶性;

3)若关于x的不等式有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

极坐标系与直角坐标系有相同的长度单位,以坐标原点为极点,以轴正半轴为极轴.已知曲线的极坐标方程为,曲线的极坐标方程为,射线与曲线分别交异于极点的四点.

(1)若曲线关于曲线对称,求的值,并把曲线化成直角坐标方程;

(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线与椭圆相交于两个不同的点,与轴相交于点为坐标原点.

(1)证明:

(2)若,求的面积取得最大值时椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有人,现采用分层抽样的方法,从该单位上述员工中抽取人调查专项附加扣除的享受情况.

(Ⅰ)应从老、中、青员工中分别抽取多少人?

(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为.享受情况如右表,其中“”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.

员工

项目

A

B

C

D

E

F

子女教育

×

×

继续教育

×

×

×

大病医疗

×

×

×

×

×

住房贷款利息

×

×

住房租金

×

×

×

×

×

赡养老人

×

×

×

(i)试用所给字母列举出所有可能的抽取结果;

(ii)设为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件发生的概率.

查看答案和解析>>

同步练习册答案