精英家教网 > 高中数学 > 题目详情

设an=1+q+q2+…+qn-1(n∈N,q≠±1),An=C n1a1+C n2a2+…+Cnnan,求An(用n和q表示).

An [2n-(1-q)n]

解析解:因为an
所以An [C n1 (1-q)+C n2 (1-q2)+…+Cnn (1-qn)]
 [C n1+C n2+…+Cnn-(Cn1q+Cn2q2+…+Cnnqn)]
 [(2n-1)-(1+q)n+1]
 [2n-(1-q)n].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知是各项均为正数的等比数列,且
(1)求的通项公式;
(2)设求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.

(1)求数列{an}的通项公式;
(2)若数列{bn}满足:bn=an+(-1)nlnan,求数列{bn}的前n项和Sn·

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为满足.
(1)求数列的通项公式;
(2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

我们把一系列向量排成一列,称为向量列,记作,又设,假设向量列满足:
(1)证明数列是等比数列;
(2)设表示向量间的夹角,若,记的前项和为,求
(3)设上不恒为零的函数,且对任意的,都有,若,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设曲线在点处的切线与轴的交点坐标为
(1)求的表达式;
(2)设,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在各项均为正数的等比数列{an}中,已知a2=2a1+3,且3a2,a4,5a3成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=log3an,求数列{anbn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的相邻两项anan+1是关于x的方程x2-2nxbn=0的两根,且a1=1.
(1)求证:数列是等比数列;
(2)求数列{an}的前n项和Sn
(3)设函数f(n)=bnt·Sn(n∈N*),若f(n)>0对任意的n∈N*都成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列中,.
(1)求
(2)设,求证:为等比数列;
(3)求的前项积

查看答案和解析>>

同步练习册答案