【题目】某学校高一 、高二 、高三三个年级共有 名教师,为调查他们的备课时间情况,通过分层
抽样获得了名教师一周的备课时间 ,数据如下表(单位 :小时):
高一年级 | ||||||||
高二年级 | ||||||||
高三年级 |
(1)试估计该校高三年级的教师人数 ;
(2)从高一年级和高二年级抽出的教师中,各随机选取一人,高一年级选出的人记为甲 ,高二年级选出的人记为乙 ,求该周甲的备课时间不比乙的备课时间长的概率 ;
(3)再从高一、高二、高三三个年级中各随机抽取一名教师,他们该周的备课时间分别是(单位: 小时),这三个数据与表格中的数据构成的新样本的平均数记为,表格中的数据平均数记为 ,试判断与的大小. (结论不要求证明)
【答案】(1);(2);(3).
【解析】试题分析:(1)直接根据分层抽样方法,可得高三年级的教师共有(人);(2)根据互斥事件、独立事件的概率公式求解;(3)分别求出三组总平均值,以及新加入的三个数的平均数为9,比较大小即可.
试题解析:(1)抽出的20位教师中,来自高三年级的有8名,
根据分层抽样方法,高三年级的教师共有(人)
(2)设事件为 “甲是现有样本中高一年级中的第个教师”, ,
事件 “乙是现有样本中高二年级中的第个教师”, ,
由题意知: , ,
设事件为“该周甲的备课时间比乙的备课时间长”,由题意知,
所以
故;
(3), ,
三组总平均值,
新加入的三个数的平均数为9,比小,
故拉低了平均值,∴.
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦点在轴上,且椭圆的焦距为2.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点的直线与椭圆交于两点,过作轴且与椭圆交于另一点, 为椭圆的右焦点,求证:三点在同一条直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( )
A.57.2,3.6
B.57.2,56.4
C.62.8,63.6
D.62.8,3.6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是各项均不相等的数列, 为它的前项和,满足.
(1)若,且成等差数列,求的值;
(2)若的各项均不相等,问当且仅当为何值时, 成等差数列?试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高职院校进行自主招生文化素质考试,考试内容为语文、数学、英语三科,总分为200分.现从上线的考生中随机抽取20人,将其成绩用茎叶图记录如下:
男 | 女 | |||||||||||
15 | 6 | |||||||||||
5 | 4 | 16 | 3 | 5 | 8 | |||||||
8 | 2 | 17 | 2 | 3 | 6 | 8 | 8 | 8 | ||||
6 | 5 | 18 | 5 | 7 | ||||||||
19 | 2 | 3 |
(Ⅰ)计算上线考生中抽取的男生成绩的方差;(结果精确到小数点后一位)
(Ⅱ)从上述茎叶图180分以上的考生中任选2人作为考生代表出席座谈会,求所选考生恰为一男一女的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1 .
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)令cn= ,求数列{cn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明PA∥平面EDB;
(2)证明PB⊥平面EFD;
(3)求二面角C﹣PB﹣D的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.
(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;
(Ⅱ)求证:A为线段BM的中点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com