精英家教网 > 高中数学 > 题目详情
有下列命题:①若a,a+10和a+14都是质数,则a=3;②已知a、b、c都是正数,且关于x的方程(c+a)x2+2bx+(c-a)=0有两个相等的实数根,则a、b、c可以作为一个直角三角形的三边长;③存在实数x、y,满足5x2-12xy+10y2-6x-4y+13=0;④若一个自然数有奇数个正约数,则这个数一定是平方数.

其中真命题的个数是(    )

A.1                  B.2                  C.3                  D.4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

关于非零平面向量
a
b
c
.有下列命题:
①若
a
=(1,k),
b
=(-2,6),
a
∥b,则k=-3;  ②若|
a
|=|
b
|=|
a
-
b
|,则
a
a
+
b
的夹角为60°;
③|
a
+
b
|=|
a
|+|
b
|?
a
b
的方向相同;    ④|
a
|+|
b
|>|
a
-
b
|?
a
b
的夹角为锐角;
⑤若
a
=(1,-3),
b
=(-2,4),
c
=(4,-6),则表示向量4
a
,3
b
-2
a
c
的有向线段首尾连接能构成三角形.
其中真命题的序号是
①③
①③
(将所有真命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数y=f(x),有下列命题:
①若a∈[-2,2],则函数f(x)=
x2+ax+1
的定义域为R;
②若f(x)=log
1
2
(x2-3x+2),则f(x)的单调增区间为(-∞,
3
2
);
③函数f(x)=loga(x+
a
x
-4)(a>0且a≠1)
的值域为R,则实数a 的取值范围是0<a≤4且a≠1;
④定义在R上的函数f(x),若对任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x) 则4是y=f(x)的一个周期.
其中真命题的序号是
①③④
①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,l表示三条不同的直线,α,β,γ表示三个不同的平面,有下列命题:
①若α∩β=a,β∩γ=b,且a∥b,则α∥γ;
②若a,b相交,且都在α,β外,a∥α,a∥β,b∥α,b∥β,则α∥β;
③若α⊥β,α∩β=a,b在β内,a⊥b,则b⊥α;
④若a在α内,b在α内,l⊥a,l⊥b,则l⊥α.
其中正确的有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉兴二模)设a,b,c∈R,有下列命题:
①若a>0,则f(x)=ax+b在R上是单调函数;
②若f(x)=ax+b在R上是单调函数,则a>0;
③若b2-4ac<0,则 a3+ab+c≠0;
④若a3+ab+c≠0,则b2-4ac<0.
其中,真命题的序号是
①③
①③

查看答案和解析>>

科目:高中数学 来源: 题型:

已知事件A与事件B发生的概率分别为P(A)、P(B),有下列命题:
①若A为必然事件,则P(A)=1.    
②若A与B互斥,则P(A)+P(B)=1.
③若A与B互斥,则P(A∪B)=P(A)+P(B).
其中真命题有(  )个.
A、0B、1C、2D、3

查看答案和解析>>

同步练习册答案