等级 | 优秀 | 合格 | 尚待改进 |
频数 | 15 | x | 5 |
等级 | 优秀 | 合格 | 尚待改进 |
频数 | 15 | 3 | y |
男生 | 女生 | 总计 | |
优秀 | |||
非优秀 | |||
总计 |
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
分析 (1)根据分层抽样,求出x与y,得到表2中非优秀学生共5人,从这5人中任选2人的所有可能结果共10种,其中恰有1人测评等级为合格的情况共6种,可得概率;
(2)根据P(K2≥2.706)=$\frac{45(15×5-15×10)^{2}}{30×15×25×20}$=1.125<2.706,判断出没有90%的把握认为“测评结果优秀与性别有关”.
解答 解:(1)设从高一年级男生中抽出m人,则$\frac{m}{500}=\frac{45}{500+400}$,∴m=25
∴x=25-15-5=5,y=20-18=2
表2中非优秀学生共5人,记测评等级为合格的3人为a,b,c,尚待改进的2人为A,B,
则从这5人中任选2人的所有可能结果为(a,b),(a,c),(a,A),(a,B),(b,c),(b,A),(b,B),(c,A),(c,B),(A,B)共10种,
记事件C表示“从表二的非优秀学生5人中随机选取2人,恰有1人测评等级为合格”
则C的结果为:(a,A),(a,B),(b,A),(b,B),(c,A),(c,B),共6种,
∴P(C)=$\frac{6}{10}$=$\frac{3}{5}$,故所求概率为$\frac{3}{5}$;
(2)2×2列联表
男生 | 女生 | 总计 | |
优秀 | 15 | 15 | 30 |
非优秀 | 10 | 5 | 15 |
总计 | 25 | 20 | 45 |
点评 本题考查了古典概率模型的概率公式,独立性检验,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{\sqrt{15}}{4}$ | B. | $\frac{\sqrt{15}}{4}$ | C. | -$\frac{1}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 15 | B. | 29 | C. | 16 | D. | 31 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com