精英家教网 > 高中数学 > 题目详情
6.在中学综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评,某校高二年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高二年级抽取了45名学生的测评结果,并作出频数统计表如下:
表1:男生
等级优秀合格尚待改进
频数15x5
表2:女生
等级优秀合格尚待改进
频数153y
(1)从表2的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率;
(2)由表中统计数据填写下边2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.
男生女生总计
优秀
非优秀
总计
参考数据与公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$临界值表
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879

分析 (1)根据分层抽样,求出x与y,得到表2中非优秀学生共5人,从这5人中任选2人的所有可能结果共10种,其中恰有1人测评等级为合格的情况共6种,可得概率;
(2)根据P(K2≥2.706)=$\frac{45(15×5-15×10)^{2}}{30×15×25×20}$=1.125<2.706,判断出没有90%的把握认为“测评结果优秀与性别有关”.

解答 解:(1)设从高一年级男生中抽出m人,则$\frac{m}{500}=\frac{45}{500+400}$,∴m=25
∴x=25-15-5=5,y=20-18=2
表2中非优秀学生共5人,记测评等级为合格的3人为a,b,c,尚待改进的2人为A,B,
则从这5人中任选2人的所有可能结果为(a,b),(a,c),(a,A),(a,B),(b,c),(b,A),(b,B),(c,A),(c,B),(A,B)共10种,
记事件C表示“从表二的非优秀学生5人中随机选取2人,恰有1人测评等级为合格”
则C的结果为:(a,A),(a,B),(b,A),(b,B),(c,A),(c,B),共6种,
∴P(C)=$\frac{6}{10}$=$\frac{3}{5}$,故所求概率为$\frac{3}{5}$;
(2)2×2列联表

 男生女生总计
优秀151530
非优秀10515
总计252045
∵P(K2≥2.706)=$\frac{45(15×5-15×10)^{2}}{30×15×25×20}$=1.125<2.706
∴没有90%的把握认为“测评结果优秀与性别有关”.

点评 本题考查了古典概率模型的概率公式,独立性检验,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\sqrt{|x+1|+|x+2|-5}$的定义域为集合A.
(Ⅰ)求集合A;
(Ⅱ)设集合B={x|-1<x<2},当实数a,b∈B∩(∁RA)时,求证:$\frac{|a+b|}{2}$<|1+$\frac{ab}{4}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列命题中的真命题有(  )
①做9次抛掷一枚均匀硬币的试验,结果有5次出现正面,因此,出现正面的概率是$\frac{5}{9}$;
②盒子中装有大小均匀的3个红球,3个黑球,2个白球,那么每种颜色的球被摸到的可能性相同;
③从-4,-3,-2,-1,0,1,2中任取一个数,取得的数小于0和不小于0的可能性相同;
④分别从2名男生,3名女生中各选一名作为代表,那么每名学生被选中的可能性相同.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设集合A={x|-1≤x≤2},B={y|y=2x-a,a∈R,x∈A},C={z|z=x2,x∈A},是否存在实数a,使得C⊆B?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.抛掷一枚均匀硬币n(3≤n≤8)次,正面向上的次数ξ服从二项分布B(n,$\frac{1}{2}$),若P(ξ=1)=$\frac{3}{32}$,则方差D(ξ)=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知sin(x+$\frac{π}{6}$)=$\frac{1}{4}$,则sin($\frac{5}{6}$π-x)的值为(  )
A.-$\frac{\sqrt{15}}{4}$B.$\frac{\sqrt{15}}{4}$C.-$\frac{1}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.顺次列出的规律相同的20个数中的前四个数依次是2×1-1,2×2-1,2×3-1,2×4-1,第15个数是(  )
A.15B.29C.16D.31

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x||x-2|>1},B={x|x2+px+q>0},若A=B,则p+q=(  )
A.1B.-1C.7D.-7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=$\overrightarrow a•({\overrightarrow b+\overrightarrow c})$,其中向量$\overrightarrow a=({sinx,-cosx})$,$\overrightarrow b=({sinx,-3cosx})$,$\overrightarrow c=({-cosx,sinx})$,x∈R
(1)求函数f(x)的单调减区间;
(2)当$x∈[{\frac{π}{8},\frac{π}{2}}]$时,方程f(x)+m-2=0有且仅有一个根,求实数m的取值范围.

查看答案和解析>>

同步练习册答案