精英家教网 > 高中数学 > 题目详情
5.定义运算x*y=$\left\{\begin{array}{l}{y(x≥y)}\\{x(x<y)}\end{array}\right.$,则函数f(x)=(sin2x)*(cosx)的最大值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.1

分析 由题意可得f(x)=$\left\{\begin{array}{l}{cosx,sin2x≥cosx}\\{sin2x,sin2x<cosx}\end{array}\right.$,分类讨论分别求最大值比较可得.

解答 解:由题意可得f(x)=(sin2x)*(cosx)=$\left\{\begin{array}{l}{cosx,sin2x≥cosx}\\{sin2x,sin2x<cosx}\end{array}\right.$,
∴当sin2x≥cosx即2sinxcosx≥cosx,即cosx(2sinx-1)≥0时,
可得$\left\{\begin{array}{l}{cosx≥0}\\{sinx-\frac{1}{2}≥0}\end{array}\right.$或$\left\{\begin{array}{l}{cosx≤0}\\{sinx-\frac{1}{2}≤0}\end{array}\right.$,解得2kπ-$\frac{π}{6}$≤x≤2kπ+$\frac{π}{2}$或2kπ+$\frac{5π}{6}$≤x≤2kπ+$\frac{3π}{2}$,k∈Z
此时f(x)=cosx,最大值为1;
同理当sin2x<cosx时f(x)=cosx,最大值也为1.
故选:D.

点评 本题考查三角函数的最值,涉及新定义即分类讨论的思想和解三角方程,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=3,(2$\overrightarrow{a}$-3$\overrightarrow{b}$)(2$\overrightarrow{a}$+$\overrightarrow{b}$)=61.
(1)求$\overrightarrow{a}$•$\overrightarrow{b}$及$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ;
(2)求|$\overrightarrow{a}$-$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,CB=4,CA=3,$\overrightarrow{CB}•\overrightarrow{AC}$=-6.
(1)求∠ACB的大小;
(2)若D是AB上一动点,求$\overrightarrow{AD}•$($\overrightarrow{CA}$+2$\overrightarrow{CB}$)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,AD⊥BC,垂足为D,AD在△ABC的内部,且BD:DC:AD=2:3:6,求∠BAC的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设S=1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{100}}$,则S的整数部分是(  )
A.17B.18C.19D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在△ABC中,O为中线AM上的动点.
(1)证明:$\overrightarrow{OB}$+$\overrightarrow{OC}$=2$\overrightarrow{OM}$
(2)设|$\overrightarrow{AM}$|=2,$\overrightarrow{OM}$=t$\overrightarrow{AM}$(0≤t≤1),试把$\overrightarrow{OA}$•($\overrightarrow{OB}+\overrightarrow{OC}$)表示为t的函数f(t),并求当O在AM上何处时,f(t)的值最小,最小值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知随机变量ξ的分布列为
 ξ-2-1 0 2
 P $\frac{1}{12}$ $\frac{3}{12}$ $\frac{4}{12}$ $\frac{1}{12}$$\frac{2}{12}$ $\frac{1}{12}$ 
分别求出随机变量η1=$\frac{1}{2}$ξ,η22的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求函数y=-x2-2x+2(-2≤x≤0)的最大最小值,并求取得最大,最小值对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.抛物线y2=4x,O为原点,弦PQ过A(3,2)点且以A为中点.
(1)求PQ的方程;
(2)过P平行x轴的直线与准线交于M,证明:Q、O、M三点共线.

查看答案和解析>>

同步练习册答案