精英家教网 > 高中数学 > 题目详情

【题目】已知a>0,设命题p:函数f(x)=x2﹣2ax+1﹣2a在区间[0,1]上与x轴有两个不同的交点;命题q:g(x)=|x﹣a|﹣ax有最小值.若(¬p)∧q是真命题,求实数a的取值范围.

【答案】解:若p真,则 ,即
<a≤
若q真,g(x)=|x﹣a|﹣ax=
∵a>0,
∴﹣(1+a)<0,
即g(x)在(﹣∞,a)单调递减的,要使g(x)有最小值,则g(x)在[a,+∞)增或为常数,
即1﹣a≥0,
∴0<a≤1,
若(¬p)∧q是真命题,则p为假命题且q为真命题,

解得:a∈(0, ]∪( ,1]
【解析】由(¬p)∧q是真命题,得:p假且q真;分别求出命题p,q为真假是参数a的范围,可得答案.
【考点精析】本题主要考查了命题的真假判断与应用的相关知识点,需要掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知⊙O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是⊙O的直径.

(1)求证:ACBC=ADAE;
(2)过点C作⊙O的切线交BA的延长线于点F,若AF=4,CF=6,求AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={(x,y)|(x﹣4)2+y2=1},B={(x,y)|(x﹣t)2+(y﹣at+2)2=1},如果命题“t∈R,A∩B≠”是真命题,则实数a的取值范围是(
A.[1,4]
B.[0, ]
C.[0, ]
D.(﹣∞,0]∪( ,+∞]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于x的一元二次方程x2+2ax+b2=0.
(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.
(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)

在正三棱柱中,点的中点,

(1)求证:平面

(2)试在棱上找一点,使

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分为16为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y与月处理量x之间的函数关系可近似地表示为

且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,国家将给予补偿

1当x[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?

2该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解一个英语教改实验班的情况,举行了一次测试,将该班30位学生的英语成绩进行统计,得图示频率分布直方图,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].

(1)求出该班学生英语成绩的众数,平均数及中位数;
(2)从成绩低于80分的学生中随机抽取2人,规定抽到的学生成绩在[50,60)的记1绩点分,在[60,80)的记2绩点分,设抽取2人的总绩点分为ξ,求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|.
(1)若f(x)≤m的解集为{x|﹣1≤x≤5},求实数a,m的值.
(2)当a=2且0≤t<2时,解关于x的不等式f(x)+t≥f(x+2).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cos2x, sinx), =(1,cosx),函数f(x)=2 +m,且当x∈[0, ]时,f(x)的最小值为2.
(1)求m的值,并求f(x)图象的对称轴方程;
(2)设函数g(x)=[f(x)2]﹣f(x),x∈[0, ],求g(x)的最大值.

查看答案和解析>>

同步练习册答案