精英家教网 > 高中数学 > 题目详情
若当函数f(-x)=f(x)时,则称f(x)为偶函数.设f(x)=(m-2)x2-3mx+1(x∈R)为偶函数,那么它的单调增区间是____________.

解析:f(-x)=f(x)m=0,

∴f(x)=-2x2+1.

∴在(-∞,0]上递增.

答案:(-∞,0].


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出以下五个结论:
(1)函数f(x)=
x-1
2x+1
的对称中心是(-
1
2
,-
1
2
)

(2)若关于x的方程x-
1
x
+k=0
在x∈(0,1)没有实数根,则k的取值范围是k≥2;
(3)已知点P(a,b)与点Q(1,0)在直线2x-3y+1=0两侧,当a>0且a≠1,b>0时,
b
a-1
的取值范围为(-∞,-
1
3
)∪(
2
3
,+∞)

(4)若将函数f(x)=sin(2x-
π
3
)
的图象向右平移?(?>0)个单位后变为偶函数,则?的最小值是
12

(5)已知m,n是两条不重合的直线,α,β是两个不重合的平面,若m⊥α,n∥β且m⊥n,则α⊥β;其中正确的结论是:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)的定义域为R+,若对于给定的正数k,定义函数:fk(x)=
k,f(x)≤k
f(x),f(x)>k
,则当函数f(x)=
1
x
,k=1
时,函数fk(x)的图象与直线x=
1
4
,x=2,y=0围成的图形的面积为(  )

查看答案和解析>>

科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练2练习卷(解析版) 题型:解答题

已知函数f(x)=ax--3ln x,其中a为常数.

(1)当函数f(x)的图象在点处的切线的斜率为1,求函数f(x)上的最小值;

(2)若函数f(x)在区间(0,+)上既有极大值又有极小值,a的取值范围;

(3)(1)的条件下,过点P(1,-4)作函数F(x)=x2[f(x)+3lnx-3]图象的切线,试问这样的切线有几条?并求出这些切线方程.

 

查看答案和解析>>

科目:高中数学 来源:0111 月考题 题型:解答题

已知a>0且a≠1,
(1)求函数f(x)的解析式;
(2)试判定函数f(x)的奇偶性与单调性;
(3)若对于函数f(x),当x∈(-1,1)时,有f(1-m)+f(3m-2)<0恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案