精英家教网 > 高中数学 > 题目详情

已知函数,且.
(1)求的值;
(2)若,求.

(1);(2).

解析试题分析:(1)将代入函数的解析式求出的值;(2)先利用已知条件,结合两角和与差的正弦公式求出的某个三角函数值,然后将代入函数的解析式,并结合诱导公式对进行化简,最后利用同角三角函数的基本关系求出的值.
试题解析:(1)
所以
(2)
 


,则
.
【考点定位】本题考查诱导公式、同角三角函数的基本关系以及两角和的三角函数,综合考查三角函数的求值问题,属于中等题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数图象的一条对称轴是直线.
(1)求;      
(2)求函数的单调增区间;
(3)画出函数在区间[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)化简
(2)若是第三象限角,且cos()=,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)求的最小正周期;
(2)若函数的图像向右、向上分别平移个单位长度得到的图像,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某同学用“五点法”画函数在某一
个周期内的图象时,列表并填入的部分数据如下表:



















 
(1)请求出上表中的,并直接写出函数的解析式;
(2)将的图象沿轴向右平移个单位得到函数,若函数(其中)上的值域为,且此时其图象的最高点和最低点分别为,求夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数.
(1)求的值;
(2)求函数的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数).
(1)求函数的最小正周期;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知扇形OAB的圆心角α为120°,半径长为6,
(1)求的弧长;
(2)求弓形OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)(2011•重庆)设α∈R,f(x)=cosx(asinx﹣cosx)+cos2﹣x)满足,求函数f(x)在上的最大值和最小值.

查看答案和解析>>

同步练习册答案