精英家教网 > 高中数学 > 题目详情

【题目】为了加强中学生实践、创新和团队建设能力的培养,促进教育教学改革,市教育局举办了全市中学生创新知识竞赛,某中学举行了选拔赛,共有150名学生参加,为了了解成绩情况,从中抽取50名学生的成绩(得分均为整数,满分为100分)进行统计,请你根据尚未完成的频率分布表,解答下列问题:

(1)完成频率分布表(直接写出结果);

(2)若成绩在90.5分以上的学生获一等奖,试估计全校获一等奖的人数,现在从全校所有获一等奖的同学中随机抽取2名同学代表学校参加竞赛,某班共有2名同学荣获一等奖,求该班同学恰有1人参加竞赛的概率.

分组

频数

频率

第1组

[60.5,70.5)

0.26

第2组

[70.5,80.5)

17

第3组

[80.5,90.5)

18

0.36

第4组

[90.5,100.5]

合计

50

1

【答案】(1)见解析; (2).

【解析】

1)根据频率、频数与总数关系分别计算并填表,(2)先根据频率、频数与总数关系估计全校获一等奖的人数,再利用枚举法得总事件数以及所求事件包含事件数,最后根据古典概型概率公式求结果.

(1)作出频率分布表如下:

频数

频率

第1组

13

0.26

第2组

17

0.34

第3组

18

0.36

第4组

2

0.04

合计

50

1

(2)获得一等奖的概率约为0.04,

∴获得一等奖的人数估计为150×0.04=6(人),其中,该班共有2名同学荣获一等奖,

记获得一等奖的这6人为: A1,A2,B,C,D,E,共中A1,A2为该班获得一等奖的同学,

从全校所有获得一等奖的6名同学中抽取2名同学代表全校参加竞赛共有(A1,B),(A1,C),(A1,D),(A1,E),(A2,B),(A2,C),(A2,D),(A2,E),(A1,A2),(B,C),(B,D),(B,E),(C,D),(C,E),(E,D)共种情况,该班同学恰恰有1人参加竞赛的情况有8种,分别为:(A1,B),(A1,C),(A1,D),(A1,E),(A2,B),(A2,C),(A2,D),(A2,E),∴该班同学恰有1人参加竞赛的概率P=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的图象所过的定点为,光线沿直线射入,遇直线后反射,且反射光线所在的直线经过点,求的值和的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:方程x2+2m-4x+m=0有两个不等的实数根:命题qx[23],不等式x2-4x+13≥m2恒成立.

1)若命题p为真命题,则实数m的取值范围;

2)若命题pq为真命题,命题pq为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形,,平面底面的中点,是棱上的点,

1)求证:平面平面

2)若为棱的中点,求异面直线所成角的余弦值;

3)若二面角大小为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是半正多面体(图1.半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最大值为,其图像相邻两条对称轴之间的距离为,且的图像关于点对称,则下列判断正确的是()

A. 函数上单调递增

B. 函数的图像关于直线对称

C. 时,函数的最小值为

D. 要得到函数的图像,只需要将的图像向右平移个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为弘扬中华传统文化,某校组织高一年级学生到古都西安游学.在某景区,由于时间关系,每个班只能在甲、乙、丙三个景点中选择一个游览.高一班的名同学决定投票来选定游览的景点,约定每人只能选择一个景点,得票数高于其它景点的入选.据了解,在甲、乙两个景点中有人会选择甲,在乙、丙两个景点中有人会选择乙.那么关于这轮投票结果,下列说法正确的是

该班选择去甲景点游览;

乙景点的得票数可能会超过

丙景点的得票数不会比甲景点高

三个景点的得票数可能会相等.

A. ①② B. ①③ C. ②④ D. ③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}中,a1=8,a4=2,且满足an+2-2an+1an=0.

(1)求数列的通项公式;

(2)设Sn=|a1|+|a2|+…+|an|,求Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰直角中,,点在线段.

(Ⅰ) ,求的长;

)若点在线段上,且,问:当取何值时,的面积最小?并求出面积的最小值.

查看答案和解析>>

同步练习册答案