精英家教网 > 高中数学 > 题目详情
(理做)已知函数f(x)=2x-2-|x|
(1)若f(x)=0,求x的值;
(2)若对于t∈[1,2]时,不等式2f(2t)+mf(t)≥0恒成立,求实数m的取值范围.
考点:指数函数综合题
专题:函数的性质及应用
分析:(1)首先,化简f(x)=0,然后,针对a进行讨论;
(2)首先,将问题进行等价转化:得到m≥-(4t+1)恒成立,也就是m大于或等于-(4t+1)的最大值-5,最后,得到结果.
解答: 解:(1)f(x)=0,
即2x-2-|x|=0,
当x≥0,即2x-2-x=0,
化简,得4x=1,
∴x=0,
当x<0,即2x-2x=0,
即0=0,恒成立
综上,x的值(-∞,0].
(2)2f(2t)+mf(t)=2(22t-
1
22t
+m(2t-
1
2t
)≥0

化简,得
(2t-
1
2t
)(4t+1+m)≥0

∵t∈[1,2],
∴2t
1
2t

∴4t+1+m≥0,
即m≥-(4t+1)恒成立,
也就是m大于或等于-(4t+1)的最大值-5,
∴m≥-5,
∴实数m的取值范围[-5,+∞).
点评:本题重点考查了函数的性质、函数的单调性和幂的运算性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一元二次不等式2kx2+kx-
3
8
<0对一切实数x恒成立,则k的范围是(  )
A、(-3,0)
B、(-3,0]
C、(-∞,-3]
D、(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+1,若f(x)>0的解集为{x|-2<x<1},函数g(x)=2x+3,
(1)求a与b的值; 
(2)解不等式f(x)>g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=(1+x-
x2
2
+
x3
3
)cos2x在区间[-3,3]上的零点的个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求点P(2,5)关于直线x+y-5=0对称的点P1的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

正三棱锥D-ABC中,底面三角形ABC的面积为4
3
,A1、B1、C1是棱DA、DB、DC的中点,E、F在线段A1B1、A1C1上,且EF∥B1C1.则△AEF和四边形EFCB在底面ABC上的射影的面积之和为(  )
A、
2
3
3
B、
4
3
3
C、
8
3
3
D、与EF位置有关,总面积不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
是单位向量,
a
b
=0.若向量
c
满足|
c
-
a
-
b
|=1,则|
c
|的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,则该几何体的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log
1
2
(x2-2ax+4)

(1)已知函数的值域为R,求a的取值范围;
(2)当a为何值时,f(x)在[1,+∞)上有意义.

查看答案和解析>>

同步练习册答案