精英家教网 > 高中数学 > 题目详情

【题目】函数 , 定义使f(1)f(2)f(3)…f(k)为整数的数k(k∈N*)叫做企盼数,则在区间[1,2013]内这样的企盼数共有 个.

【答案】9
【解析】解:令g(k)=f(1)f(2)f(3)…f(k),
∵f(k)=log(k+1)(k+2)=
∴g(k)==log2(k+2).
要使g(k)成为企盼数,则k+2=2n , n∈N*
∵k∈[1,2013],∴(k+2)∈[3,2015],即2n∈[3,2015].
∵22=4,210=1024,211=2048.
可取n=2,3,…,10.
因此在区间[1,2013]内这样的企盼数共有9个.
【考点精析】根据题目的已知条件,利用换底公式的应用的相关知识可以得到问题的答案,需要掌握换底公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ)(其中 )的图象如图所示,为了得到g(x)=sin2x的图象,则只需将f(x)的图象(
A.向右平移 个长度单位
B.向右平移 个长度单位
C.向左平移 个长度单位
D.向左平移 个长度单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足an+1+(﹣1)nan=3n﹣1,则{an}的前60项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a2+c2=b2+ ac. (Ⅰ)求∠B的大小;
(Ⅱ)求 cosA+cosC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是公差为3的等差数列,数列{bn}满足b1=1,b2= ,anbn+1+bn+1=nbn . (Ⅰ)求{an}的通项公式;
(Ⅱ)求{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}满足 =1,公差d∈(﹣1,0),当且仅当n=9时,数列{an}的前n项和Sn取得最大值,求该数列首项a1的取值范围(
A.(
B.[ ]
C.(
D.[ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边为a,b,c,角A,B,C的大小成等差数列,向量 =(sin ,cos ),=(cos ,﹣ cos ),f(A)=
(1)若f(A)=﹣ ,试判断三角形ABC的形状;
(2)若b= ,a= ,求边c及SABC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆心在y轴上,半径为1,且过点(1,2)的圆的方程为(
A.x2+(y﹣2)2=1
B.x2+(y+2)2=1
C.(x﹣1)2+(y﹣3)2=1
D.x2+(y﹣3)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的离心率为 ,且右准线方程为x=5.
(1)求椭圆方程;
(2)过椭圆右焦点F作斜率为1的直线l与椭圆C交于A,B两点,P为椭圆上一动点,求△PAB面积的最大值.

查看答案和解析>>

同步练习册答案