精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x3-3ax-1,a≠0.

(1)求f(x)的单调区间;

(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.

【答案】见解析

【解析】(1)f′(x)=3x2-3a=3(x2-a),

当a<0时,对x∈R,有f′(x)>0,

∴当a<0时,f(x)的单调增区间为(-∞,+∞);

当a>0时,由f′(x)>0,解得x<-或x>

由f′(x)<0,解得-<x<

∴当a>0时,f(x)的单调增区间为(-∞,-),(,+∞);单调减区间为(-).

(2)∵f(x)在x=-1处取得极值,

∴f′(-1)=3×(-1)2-3a=0,∴a=1.

∴f(x)=x3-3x-1,

f′(x)=3x2-3,

由f′(x)=0,

解得x1=-1,x2=1.

由(1)中f(x)的单调性可知,f(x)在x=-1处取得极大值f(-1)=1,在x=1处取得极小值f(1)=-3.

因为直线y=m与函数y=f(x)的图象有三个不同的交点,

结合如图所示f(x)的图象可知:

m的取值范围是(-3,1).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱柱中,底面是矩形,且,若的中点,且

)求证: 平面

)线段上是否存在一点,使得二面角的大小为?若存在,求出的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1) 为何值时, .①有且仅有一个零点;②有两个零点且均比-1大;

(2)若函数有4个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB相交于点D,与椭圆相交于E、F两点.

(1)若=6,求k的值;

(2)求四边形AEBF面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某区工商局、消费者协会在号举行了以携手共治,畅享消费为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的群众中随机抽取名群众,按他们的年龄分组:第,第,第,第,第,得到的频率分布直方图如图所示.

)若电视台记者要从抽取的群众中选人进行采访,求被采访人恰好在第组或第组的概率;

)已知第组群众中男性有人,组织方要从第组中随机抽取名群众组成维权志愿者服务队,求至少有两名女性的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于x的函数y=2cos2x-2acosx-(2a+1)的最小值为f(a),试确定满足f(a)=的a的值,并求此时函数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}中公差d≠0,有a1+a4=14,且a1a2a7成等比数列.

(Ⅰ)求{an}的通项公式an与前n项和公式Sn

(Ⅱ)令bn= (k<0),若{bn}是等差数列,求数列{}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用长为,宽为的长方形铁皮做一个无盖的容器.先在四角分别截去一个小正方形,然后把四边翻转,再焊接而成(如图).问该容器的高为多少时,容器的容积最大?最大容积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),

(1)求函数的单调区间

(2)当的两个极值点为).

证明:

恰为的零点的最小值

查看答案和解析>>

同步练习册答案