精英家教网 > 高中数学 > 题目详情

如图,在几何体中,四边形为平行四边形,且面,且,中点.

(Ⅰ)证明:平面

(Ⅱ)求直线与平面所成角的正弦值.

 

 

 

【答案】

解:(Ⅰ)证明:因为,且OAC的中点,所以. 

又由题意可知,平面平面,交线为,且平面,    

    所以平面.                           ……..(5分)                   

(Ⅱ)如图,以O为原点,所在直线分别为xyz轴建立空间直角坐标系.

 

 

由题意可知,

所以得:

则有:

设平面的一个法向量为,则有

,令,得

  所以.       

      .          

因为直线与平面所成角和向量所成锐角互余,

所以.                          ….. …….. …....(10分)                     

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,PD垂直于底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=90°,且(单位:cm),E为PA的中点.
(1)如图,若主视方向与AD平行,请作出该几何体的主视图并求出主视图面积;
(2)证明:DE∥平面PBC;
(3)证明:DE⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正四棱柱ABCD-A1B1C1D1中,AA1=
12
AB,点E、M分别为A1B、C1C的中点,过点A1、B、M三点的平面A1BMN交C1D1于点N.
(1)求证:EM∥平面A1B1C1D1
(2)求二面角B-A1N-B1的正切值;
(3)设截面A1BMN把该正四棱柱截成的两个几何体的体积分别为V1、V2(V1<V2),求V1:V2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄冈模拟)如图是一几何体的平面展开图,其中ABCD为正方形,E、F分别为PA、PD的中点.在此几何体中,给出下面四个结论:
①直线BE与直线CF异面;
②直线BE与直线AF异面;
③直线EF∥平面PBC;
④平面BCE⊥平面PAD.
其中正确的命题的个数是
2
2
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PD垂直于底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=90°,且AB=2AD=2DC=2PD=4,E为PA的中点.
(1)如图,若正视方向与AD平行,请在下面(答题区)方框内作出该几何体的正视图并求出正视图面积;
(2)证明:DE∥平面PBC;
(3)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=4,DC=3,E是PC的中点.
(I)证明:PA∥平面BDE;
(II)求△PAD以PA为轴旋转所围成的几何体体积.

查看答案和解析>>

同步练习册答案