精英家教网 > 高中数学 > 题目详情
(2012•许昌二模)已知圆锥的母线长为1,那么该圆锥体积的最大值为(  )
分析:根据题意,可得圆锥底面半径r与高h的关系式:r2+h2=1,由此将圆锥的体积表示成关于r的函数,再将函数表达式中的被开方数凑成乘积为定值的形式,最后利用基本不等式求最值,即可求出求该圆锥体积的最大值.
解答:解:设圆锥底面半径为r,高为h,则圆锥体积V=
1
3
πr2•h
∵r2+h2=1,∴h=
1-r2

∴圆锥体积为
V=
1
3
πr2
1-r2
=
3
r2
2
r2
2
(1-r2)

r2
2
r2
2
•(1-r2)≤
(
r2
2
+
r2
2
+1-r2)
3
=
1
27

当且仅当
r2
2
=1-r2时,即当r=
6
3
时圆锥体积V取得最大值
∴该圆锥体积的最大值为V=
3
1
27
=
2
3
π
27

故选:A
点评:本题给出母线长为定值的圆锥,求圆锥体积的最大值.着重考查了圆锥的体积公式和利用基本不等式求最值等知识点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•许昌二模)在直角坐标系xOy中,直线l的参数方程为
x=3-
2
2
t
y=
5
+
2
2
t
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2
5
sinθ

(Ⅰ)求圆C的圆心到直线l的距离;
(Ⅱ)设圆C与直线l交于点A、B.若点P的坐标为(3,
5
),求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌二模)设F为抛物线C:y2=2px(p>0)的焦点,过F且与抛物线C对称轴垂直的直线被抛物线C截得线段长为4.
(1)求抛物线C方程.
(2)设A、B为抛物线C上异于原点的两点且满足FA⊥FB,延长AF、BF分别抛物线C于点C、D.求:四边形ABCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌二模)设a≥0,函数f(x)=[x2+(a-3)x-2a+3]exg(x)=2-a-x-
4x+1

( I)当a≥1时,求f(x)的最小值;
( II)假设存在x1,x2∈(0,+∞),使得|f(x1)-g(x2)|<1成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌二模)若椭圆
x2
m
+
y2
8
=1
的焦距是2,则m的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌二模)如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.
(Ⅰ)求证AF∥平面BCE;
(Ⅱ)设AB=1,求多面体ABCDE的体积.

查看答案和解析>>

同步练习册答案