精英家教网 > 高中数学 > 题目详情
1.甲乙两人独立的解同一道题,甲乙解对的概率分别是p1,p2,那么至少有1人解对的概率是(  )
A.p1+p2B.p1•p2C.1-p1•p2D.1-(1-p1)•(1-p2

分析 由条件利用相互独立事件的概率乘法公式求得没有人解对的概率,再用1减去此概率,即得所求.

解答 解:没有人解对的概率为(1-p1)•(1-p2 ),故至少有1人解对的概率是1-(1-p1)•(1-p2),
故选:D.

点评 本题主要考查相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.如图,将平面直角坐标系中的纵轴绕原点O顺时针旋转30°后,构成一个斜坐标平面xOy.在此斜坐标平面xOy中,点P(x,y)的坐标定义如下:过点P作两坐标轴的平行线,分别交两轴于M、N两点,则M在Ox轴上表示的数为x,N在Oy轴上表示的数为y.那么以原点O为圆心的单位圆在此斜坐标系下的方程为(  )
A.x2+y2+xy-1=0B.x2+y2+xy+1=0C.x2+y2-xy-1=0D.x2+y2-xy+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某普通高校招生体育专业测试合格分数线确定为60分.甲、乙、丙三名考生独立参加测试,他们能达到合格的概率分别是0.9,0.8,0.75,则三个中至少有一人达标的概率为(  )
A.0.015B.0.005C.0.985D.0.995

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设矩形ABCD(AB>AD)的周长为24,把△ABC沿AC向ADC折叠,AB折过去后交DC于P,设AB=x,则△ADP的最大面积为108-72$\sqrt{2}$;相应的x=6$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知△ABC的三个内角A、B、C的对边分别是a,b,c,且$\frac{cosB}{cosC}+\frac{b}{2a+c}=0$
(1)求B的大小;
(2)若$b=\sqrt{21},a+c=5$,求△ABC的面积.
(3)若$b=\sqrt{3}$,求△ABC的周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设公差不为零,各项均为正数的等差数列{an}满足a2=$\sqrt{{8a}_{1}+1}$,且a1,a3,a13构成等比数列.
(1)求数列{an}的通项公式;
(2)若bn=$\frac{1}{\sqrt{{a}_{n}}}$,数列{bn}的前n项和为Sn,求证:Sn>$\sqrt{2n+1}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某高中学校共有学生3000名,各年级的男、女生人数如下表:(其中高三学生具体男、女生人数未统计出,设为x、y名)
高一高二高三
男生588520x
女生612480y
(1)若用分层抽样的方法在该校所有学生中抽取45名,则应在高三年级抽取多少名学生?
(2)已知该校高三年级的男女生人数都不少于395名.并且规定如果“一个年级的男女生人数相差不超过6(即男女生人数之差的绝对值不大于6)”则称该年级为“性别平衡年级”,求该校高三年级为“性别平衡年级”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=f(x)满足对任意x∈R都有f(x+2)=f(-x)成立,且函数y=f(x-1)的图象关于点(1,0)对称,f(1)=4,则f(2012)+f(2013)+f(2014)的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知一切x,y∈R,不等式x2+$\frac{81}{{x}^{2}}$-2xy+$\frac{18}{x}$$\sqrt{2-{y}^{2}}$-a≥0恒成立,则实数a的取值范围是(-∞,6].

查看答案和解析>>

同步练习册答案