精英家教网 > 高中数学 > 题目详情

【题目】设双曲线的左焦点为,点为双曲线右支上的一点,且与圆相切于点为线段的中点, 为坐标原点,则__________

【答案】

【解析】由题意可知:双曲线焦点在x轴上,a=4,b=3,c=5,

设双曲线的右焦点F1(5,0),左焦点F(﹣5,0),

由OM为△PFF1中位线,则丨OM丨=丨PF1丨,

由PF与圆x2+y2=16相切于点N,则△ONF为直角三角形,

∴丨NF丨2=丨OF丨2﹣丨ON丨2=25﹣16=9,

则丨NF丨=3,∴丨MN丨=丨MF丨﹣丨NF丨=丨MF丨﹣3,

由丨MF丨=丨PF丨,

∴|MN|﹣|MO|=丨PF丨﹣3﹣丨PF1丨=(丨PF丨﹣丨PF1丨)﹣3=×2a﹣3=1,

∴|MN|﹣|MO|=1,

故答案为:1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】学校射击队的某一选手射击一次,其命中环数的概率如表:

命中环数

10环

9环

8环

7环

概率

0.32

0.28

0.18

0.12

求该选手射击一次,

(1)命中9环或10环的概率.

(2)至少命中8环的概率.

(3)命中不足8环的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线在第一象限内的点到焦点的距离为

(1)若,过点, 的直线与抛物线相交于另一点,求的值;

(2)若直线与抛物线相交于两点,与圆相交于两点, 为坐标原点, ,试问:是否存在实数,使得的长为定值?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015年12月,华中地区数城市空气污染指数“爆表”,此轮污染为2015年以来最严重的污染过程,为了探究车流量与的浓度是否相关,现采集到华中某城市2015年12月份某星期星期一到星期日某一时间段车流量与的数据如表:

(1)由散点图知具有线性相关关系,求关于的线性回归方程;(提示数据:

(2)利用(1)所求的回归方程,预测该市车流量为12万辆时的浓度.

参考公式:回归直线的方程是,其中 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)=a(x-5)2+6lnx,其中a∈R,曲线yf(x)在点(1,f(1))处的切线与y轴相交于点(0,6).

(1)确定a的值;

(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一装有水的直三棱柱ABC-A1B1C1容器(厚度忽略不计),上下底面均为边长为5的正三角形,侧棱为10,侧面AA1B1B水平放置,如图所示,DEFG分别在棱CACBC1B1C1A1,水面恰好过点DEFC,CD=2

(1)证明:DEAB;

()若底面ABC水平放置时,求水面的高

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某广场有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李,小王设计的底座形状分别为 ,经测量米, 米, 米,

(I)求的长度;

(Ⅱ)若环境标志的底座每平方米造价为元,不考虑其他因素,小李,小王谁的设计建造费用最低(请说明理由),最低造价为多少?(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,且满足.

(1)求点的轨迹方程所代表的曲线

(2)若点 是曲线上的动点,点在直线上,且满足 ,当点上运动时,求点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知被直线 分成面积相等的四个部分,且截轴所得线段的长为2. 

(1)求的方程;

(2)若存在过点的直线与相交于 两点,且点恰好是线段的中点,求实数的取值范围.

查看答案和解析>>

同步练习册答案